5G 向け低誘電損失材料 2021-2031年: IDTechEx

This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

5G 向け低誘電損失材料 2021-2031年

トレンド、技術および見通し


製品情報 概要 目次 価格 Related Content
5G の展開は全世界で急速に進んでおり、2030年までに7200億ドルの市場規模になることが見込まれています。5G ネットワークの最も革新的な部分は高周波数の 5G 技術にあります。ミリ波帯 5G 対応デバイスは基板とパッケージの双方のレベルにおける伝送損失を減らすため低誘電損失材料を採用することになります。これは低誘電損失材料の市場を生み出すことになり、その規模は2031年までに1億1000万ドルを超え、2026年から2031年まで28%の年平均成長率(CAGR)に達することとなります。
このレポートでは5G機器向けの有力な低損失材料に注目しています 
例えば、次のような材料が挙げられます。
 
  • 低損失熱硬化性材料:熱硬化性材料は3G/4Gネットワーク機器の分野で広範に利用されてきました。しかし、ミリ波5GではDkとDfが高くなるため、熱硬化性材料の利用が限定されます。ここでは、材料のDkとDfを低減させるための主要な材料サプライヤーの戦略と研究開発の取り組みに注目します。
  • ポリテトラフルオロエチレン(PTFE):自動車用レーダーシステムや高速/高周波(HS/HF)基板およびコネクタなどの高周波アプリケーションにおいて最も一般的に利用されている材料です。
  • 液晶ポリマー(LCP):スマートフォンアンテナ用のフレキシブル基板の製造に利用されています。市場は今後も成長し、さらに他の用途での応用も進むと考えられます。
  • 低温同時焼成セラミック(LTCC):LTCCではDfが低く、Dkが広い範囲をとることから、小型高周波フィルタなど、LTCCをベースにしたコンポーネントの利用が促進されます。
  • その他:5Gシステムのパフォーマンスを最適化するために、炭化水素、ポリフェニレンエーテル(PPE、PPO)、ガラスなどの多様な材料が利用されるようになるでしょう。今後はそうした代替材料が、5Gの材料市場で大きなシェアを占めるようになると考えられます。
 
5G関連機器用の低損失材料に注目した、今後10年間の予測の概要を図3に示します 
この予測は、次の項目に基づいて行われています。
 
  • 周波数:サブ6 GHz 5Gおよびミリ波5G。
  • 市場セグメント:低損失材料を利用する、インフラ、スマートフォン、カスタマー構内設備(CPE)の各セグメントについて、アンテナ用基板材料、ビームフォーミングIC用の再配線層、および高度なパッケージ基板における低損失材料の利用を予測しています。
  • 材料タイプ:サブ6GHz 5Gとミリ波5Gの両方について、低損失材料の発展を支える市場基盤を予測しています。
 
本調査レポートは、各種の低損失材料に関する調査に基づき、比誘電率(Dk)、誘電正接(Df)、吸湿性、費用、製造性という5つの主要な要素に照らして、材料の特性のベンチマーキングを行います。レポートで取り扱う範囲を図2に示します。低損失材料は、回路基板やPCB基板として使用されるだけでなく、高度なパッケージ基板でも利用されます。1つの大きなトレンドとしてはアンテナインパッケージ(AiP)が挙げられます。ミリ波に向けて周波数が高くなるに従い、アンテナ素子のサイズは小さくなり、アレイをパッケージ自体に収容できるようになります。この集積によってRFパスが短縮され、伝送損失が最小になります。AiPでは、回路基板(および再配線層)、電磁波遮断(EMI)シールド、モールドアンダーフィル(MUF)材料などを用途とする低損失材料を必要とします。
 
詳細は目次のページでご確認ください。
 
The fifth-generation telecommunication technology, 5G, is more than a faster mobile experience to stream movies. It enables a universal connection between devices from automotive to remote robots. As the profitable business models and killer applications start to emerge, 5G is one of fastest growth markets, which will be over $720bn in 2030 and contribute to $2trn annual connectivity boost to global GDP.
 
The most revolutionary aspect of 5G network relies on the high frequency 5G technologies, i.e. mmWave 5G, which utilize spectrum from 26 GHz up to 40 GHz. At such high frequency, many technologies and devices are facing challenges as summarized in figure 1. The high-frequency signals result in significant transmission loss, require higher power and more efficient power supply, and generate more heat. The transmission loss is a pain point for the antenna design and radio frequency (RF) integrated circuits (ICs) for 5G applications. For low-frequency 5G, i.e. sub-6 GHz 5G, due to the high data transfer speed, reducing signal loss is also desirable.
 
Figure 1: Overview of challenges, trends and innovations for mmWave 5G, source: IDTechEx
With the future rise of mmWave 5G, low-loss materials will foresee a rapid growth and play an increasingly important role. In this report, we survey the landscape of the low-loss materials and benchmark their performance by five key factors, i.e. dielectric constant (Dk), dissipation factor (Df), moisture absorption, cost, and manufacturability. The scope for the report is shown in figure 2. Low-loss materials will not only be used as substrate or PCB board, but also for advanced packages. One of the strong trends is antenna in package (AiP); as we go higher in frequency towards mmWave, the size of the antenna elements will shrink and the arrays can be fitted into the package itself. This integration will also help shorten the RF paths, and thus minimize the transmission losses. AiP will need low-loss materials for the substrates (redistribution layers as well), electromagnetic interference (EMI) shielding, molded underfill (MUF) materials and more.
 
Figure 2: Scope of the low-loss materials covered in the report, source: IDTechEx
We highlight promising low-loss materials for 5G devices. These include:
  • Low-loss thermoset materials: thermoset materials dominate the market for 3G/4G network devices. However, the high Dk and Df restrict their use in mmWave 5G. We focus on the strategies and R&D effort from key materials suppliers to reduce the Dk and Df for these materials.
  • Polytetrafluoroethylene (PTFE): one of the most common materials for high-frequency applications such as Automotive Radar system and high speed / high frequency (HS/HF) board and connectors.
  • Liquid crystal polymers (LCP): it has been adapted to make flexible boards for smartphone antennas. The market will continue to grow and expand into other applications.
  • Low temperature co-fired ceramic (LTCC): the low Df and a wide range Dk for LTCC will accelerate the use of LTCC based components such as compact high frequency filters.
  • Others: in order to optimise the performance for 5G systems, a vastly diversified material will be used, for example, hydrocarbon, poly (p-phenylene ether) (PPE, or PPO) and glass. Those alternative materials will take over a large share of the 5G materials market.
 
A ten-year forecast focusing on the low-loss materials area for 5G relevant devices are developed, as summarised in figure 3. The forecasts are segmented by:
  • Frequency: sub-6 GHz 5G and mmWave 5G.
  • Market segments: low-loss materials for infrastructure, smartphone and customer promised equipment (CPE). Among each segment, we calculate the low-loss materials areas as board materials for antennas, redistribution layers for beamforming ICs and other uses in advanced packages.
  • Materials types: we estimate the market base on the evolution of low-loss materials for both sub-6GHz 5G and mmWave 5G.
 
 
Figure 3: Ten-year forecast of low-loss materials by frequency, market segments and materials types, source: IDTechEx
Based on the materials areas and price trend, we forecast the low-loss materials revenue for 5G devices from 2021 to 2031. The total market will be over 110 million USD by 2031, with an average annual growth rate of 28% from 2026 to 2031. The report contains a comprehensive analysis of different low-loss materials from different perspectives such as performance, technology trends, potentials, and requirements for large scale deployment. Importantly, the report presents an unbiased analysis of primary data gathered via our interviews with players across the supply chain, and it builds on our large database of 5G infrastructure and user equipment.
 
Figure 4: Ten-year forecast of low-loss materials in 5G by revenue. Source: IDTechEx
IDTechEx のアナリストへのアクセス
すべてのレポート購入者には、専門のアナリストによる最大30分の電話相談が含まれています。 レポートで得られた重要な知見をお客様のビジネス課題に結びつけるお手伝いをいたします。このサービスは、レポート購入後3ヶ月以内にご利用いただく必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.5G, next generation cellular communications network
1.2.Two types of 5G: Sub-6 GHz and mmWave 5G
1.3.Overview of challenges, trends and innovations for mmWave 5G
1.4.New opportunities for low-loss materials in mmWave 5G
1.5.Where low-loss materials will be used: beam forming system in base station
1.6.Where low-loss material will be used: substrate of mmWave antenna module for smartphone
1.7.Where low-loss material will be used: multiple parts inside packages
1.8.Low-loss materials can also be used in Radar
1.9.Low-loss materials can also be used in radome cover or molding housing
1.10.Overview of the low-loss materials covered by this report
1.11.The role of thermoplastics polymers and thermosetting polymers
1.12.Thermoset vs thermoplastics for 5G
1.13.Organic substrate materials evolution for 5G
1.14.Benchmark of commercialised low-loss organic laminates: Dk @ 10 GHz
1.15.Benchmark of commercialised low-loss organic laminates: Df @ 10 GHz
1.16.Strategies to achieve lower dielectric loss and trade-offs
1.17.Where is the limit of the Dk for modified thermoset
1.18.Main applications of Ceramic / LTCC in 5G
1.19.Filter technologies that can work at mmWave 5G and which one will be the future
1.20.LTCC and ceramic substrate will continue to play a key role in for RF filters
1.21.Comparison of organic laminates, ceramic and glass substrates
1.22.2G to mmWave 5G: from body or case integrated to flex PCB integrated to antenna in package
1.23.EMC innovations trends for 5G applications
1.24.Challenges and key trends for EMI shielding for 5G devices
1.25.Low-loss materials forecast in 5G by revenue
1.26.Low-loss materials areas forecast in 5G by frequency
1.27.Low-loss materials areas forecast in 5G by market segments
1.28.Low-loss materials areas forecast in 5G by types of materials
1.29.Low-loss materials areas forecast in 5G base station by materials types
1.30.Low-loss materials areas forecast in 5G smartphones by material types
1.31.Low-loss materials areas forecast in 5G CPE and hotspots by material types
2.INTRODUCTION
2.1.5G technology and the role of low-loss materials
2.1.1.5G, next generation cellular communications network
2.1.2.What can 5G offer: high speed, massive connection and low latency
2.1.3.Two types of 5G: Sub-6 GHz and mmWave
2.1.4.5G is live globally
2.1.5.5G market forecast for services 2018-2030
2.1.6.Global trends and new opportunities in 5G
2.1.7.5G new radio technologies
2.1.8.5G core network technologies
2.1.9.5G infrastructure evolution
2.1.10.5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto)
2.1.11.Structure of massive MIMO system
2.1.12.Challenges for radio frequency front end module (RF FEM) in mmWave 5G
2.1.13.Global market share and historic shipment of base station antennas and active antennas
2.1.14.5G user equipment landscape
2.1.15.5G mobile shipment units 2018-2030
2.1.16.Shipment of customer promised equipment and hotspots by units 2018-2030
2.1.17.Overview of challenges, trends and innovations for mmWave 5G
2.1.18.New opportunities for low-loss materials in mmWave 5G
2.1.19.Overview of the low-loss materials covered by this report
2.1.20.Where low-loss material will be used: beam forming system in base station
2.1.21.sub-6 GHz and mmWave 5G antennas systems for base station in one unit
2.1.22.Murata mmWave antenna module for base station
2.1.23.Where low-loss material will be used: substrate of mmWave antenna module for smartphone
2.1.24.Thermoplastic material for LDS smartphone antennas
2.1.25.Suppliers for LDS materials
2.1.26.Examples of 5G mmWave antenna for smartphone: Samsung
2.1.27.Examples of 5G mmWave antenna for smartphone: Qualcomm
2.1.28.mmWave 5G RF push up the RFFE cost for smartphones by 300%
2.1.29.Where low-loss material will be used: multiple parts inside packages
2.1.30.Roadmap of Df/Dk across all packaging materials as we transition from 4G to sub-6GHz 5G to mmwave 5G
2.1.31.Example of mmWave power amplifiers with advanced packages
2.2.Low-loss materials can also be used in radome cover or molding housing
2.3.mmWave radar technology will also need low-loss materials
2.3.1.Low-loss materials can also be used in Radar
2.3.2.Different levels of autonomy
2.3.3.Towards ADAS and Autonomous Driving: increasing sensor content
2.3.4.Towards ADAS and Autonomous Driving: increasing radar use
2.3.5.Different types of Radar: SRR, MRR and LRR
2.3.6.The evolving role of the automotive radar towards full 360deg 4D imaging radar
2.3.7.Automotive radars: role of legislation in driving the market
2.3.8.Why are radars essential to ADAS and autonomy?
2.3.9.Performance levels of existing automotive radars
2.3.10.Radar players and market share
2.3.11.Radar market forecasts (2020-2040) in all levels of autonomy/ADAS in vehicles and trucks (unit numbers)
2.3.12.Radar market forecasts (2020-2040) in all levels of autonomy/ADAS in vehicles and trucks (market value)
2.3.13.Radar market forecasts (2020-2040) in all levels of autonomy/ADAS in vehicles and trucks (market value) - moderate
2.3.14.Radar market forecasts (2020-2040) in all levels of autonomy/ADAS in vehicles and trucks (market value) - aggressive
3.LOW-LOSS SUBSTRATE MATERIALS
3.1.Introduction
3.1.1.Overview of low-loss substrate materials
3.1.2.Five important metrics for substrate materials will impact materials selection
3.2.Low-loss organic laminate overview
3.2.1.Electric properties of common polymer resin
3.2.2.The role of thermoplastics polymers and thermosetting polymers
3.2.3.Thermoset vs thermoplastics for 5G
3.2.4.Organic substrate materials evolution for 5G
3.2.5.Innovation trends for organic high frequency laminate materials
3.2.6.Hybrid system to reduce the cost for high frequency board
3.2.7.Key suppliers for high frequency and high-speed Copper Clad Laminate
3.2.8.Benchmark of commercialised low-loss organic laminates
3.2.9.Benchmark of commercialised low-loss organic laminates: Dk @ 10 GHz
3.2.10.Benchmark of commercialised low-loss organic laminates: Df @ 10 GHz
3.2.11.Other examples of low-loss laminate
3.3.Low-loss thermoset resins
3.3.1.Strategies to achieve lower dielectric loss and the trade-off
3.3.2.Polarizability and molar volume are the main factor for the dielectric loss
3.3.3.Use low polar functional groups or atomic bonds to reduce the Dk
3.3.4.Introducing bulky structures can reduce the Dk
3.3.5.Porous structure exhibits lower Dk
3.3.6.Rigid structure will lead to lower Df
3.3.7.Feature sizes will influence in the dielectric constant
3.3.8.Thinness will influence in the dielectric constant
3.3.9.Thinning the substrate at high frequencies: the challenge
3.3.10.Curing temperature influences the Df and Dk of polymers
3.3.11.Introducing an additive component might be necessary to optimise the performance
3.3.12.Strategy from Toray to reduce the Dk and Df for PI materials
3.3.13.Strategy from Taiyo Ink to reduce the Dk and Df for Epoxy materials
3.3.14.Strategy from Mitsubishi Gas Chemical to reduce the Dk and Df for BT resin laminate
3.3.15.Strategy from DuPont to reduce Dk and Df for Arylalkyl thermoset polymers
3.3.16.Strategy from JSR Corp to reduce Dk and Df for aromatic polyether polymer (HC polymer)
3.3.17.Strategy from Hitachi Chemical to reduce Dk and Df for polycyclic resin based substrate
3.3.18.Strategy from Taiyo Ink to reduce Dk and Df for Epoxy based build up materials
3.3.19.Strategy from Taiyo Ink to reduce Dk and Df for Epoxy based high-density RDL
3.3.20.Where is the limit of the Dk for modified thermoset
3.3.21.Isola
3.3.22.Isola: product for mmWave 5G
3.3.23.Low-loss thermoset laminates in Isola
3.4.Thermoplastic polymer: Liquid crystal polymer
3.4.1.LCP
3.4.2.Advantages and limitations of LCP
3.4.3.Classification of LCP
3.4.4.Smartphones use LCP antennas and FPCBs
3.4.5.LCP supply chain
3.4.6.Three type of LCP resins and the key players
3.4.7.Market share of LCP resin globally in 2019
3.4.8.LCP as an alternative to PI for flexible printed circuit board
3.4.9.LCP vs PI: Dk and Df
3.4.10.LCP vs PI: moisture
3.4.11.LCP vs PI: flexibility
3.4.12.LCP vs MPI: cost
3.4.13.LCP vs MPI: FCCL signal loss
3.4.14.LCP resin and LCP-FCCL
3.4.15.Battle of next generation antennas for smartphone
3.4.16.2G to mmwave 5G: from body or case integrated to flex PCB integrated to antenna in package
3.4.17.Murata: LCP antennas for smartphone
3.4.18.Performance of MetroCirc
3.4.19.Career Technology: key supplier for LCP materials
3.4.20.Avary/ZDT
3.4.21.KGK Kyodo Giken Kagaku
3.4.22.LCP FCCL in SYTECH for mmWave 5G
3.4.23.IQLP
3.4.24.LCP products from IQCP
3.4.25.LCP PCB board developed by IQLP and DuPont
3.5.Thermoplastic polymer: PTFE
3.5.1.Fluoropolymer and PTFE
3.5.2.Key properties of PTFE to be considered for 5G applications
3.5.3.Dielectric properties for PTFE
3.5.4.The Dk for PTFE based laminate depends on the crystallinity density
3.5.5.Key application of PTFE in 5G
3.5.6.Hybrid couplers using PTFE as substrate
3.5.7.Ceramic filled vs. glass-filled PTFE laminates
3.5.8.Concerns of using PTFE based laminate for high frequency 5G
3.5.9.Global manufacturing of PTFE resin
3.5.10.Rogers is the top supplier for PTFE laminates
3.5.11.Ceramic filled PTFE laminates in Rogers
3.6.Other organic materials
3.6.1.Sabic: PPO
3.6.2.Panasonic: MEGTRON
3.6.3.Solvay: PPS for base station antenna
3.6.4.Hydrocarbon based laminates
3.6.5.Polymer aerogels as antennas substrate
3.6.6.Blueshift: AeroZero for polyimide aerogel laminates
3.6.7.Other substrates: wood-derived cellulose nanofibril
3.7.Covestro: polycarbonates for injection molded enclosures and covers
3.8.Covestro: polycarbonates for thermal management
3.9.Inorganic substrate materials
3.9.1.Ceramic / LTCC
3.9.2.Where Ceramic / LTCC will be used in 5G
3.9.3.Ceramic substrates
3.9.4.From HTCC to LTCC
3.9.5.LTCC and HTCC packages substrate
3.9.6.HTCC metal-ceramic packages substrate
3.9.7.LTCC packages substrate for RF transitions
3.9.8.Benchmark of various LTCC materials
3.9.9.Dielectric constant: stability vs frequency for different inorganic substrates (LTCC, glass)
3.9.10.Temperature stability of dielectric parameters of HTCC and LTCC alumina
3.9.11.Filters are made commonly in LTCC substrate, but other technologies are in need
3.9.12.Filter technologies that can work at mmWave 5G and which one will be the future
3.9.13.Benchmark of various filter technologies for mmWave 5G applications
3.9.14.LTCC and ceramic substrate will continue to play a key role in for RF filters
3.9.15.Multilayer LTCC: production challenge
3.9.16.Ceramic materials can be used as thermal interface materials
3.9.17.NGK: multi-layer LTTC-based filters
3.9.18.Kyocera: LTCC substrate for package
3.9.19.Kyocera: LTCC vs. organic packages
3.9.20.Kyocera: R&D focus for LTCC packages
3.9.21.Kyocera LTCC for mmWave AiP (28GHz and 60 GHz)
3.9.22.Kyocera: multi-layer 28GHz LTCC filter
3.9.23.Kyocera mmWave embedded filter under development
3.9.24.Sunway communication: LTCC based phased array antenna for mmWave 5G mobile
3.9.25.Tecdia: thin film substrate and ceramic capacitors
3.9.26.Minicircuits: multilayer LTCC filter
3.9.27.TDK: LTCC AiP for 5G
3.10.Ferro: LTCC with wide range of Dk
3.10.1.Glass
3.10.2.Benchmark of various glass substrates
3.10.3.Use the HF-F for low transmission loss laminate
3.10.4.Glass integrated passive devices (IPD) filter for 5G by advanced semiconductor engineering
3.10.5.Glass substrate from Hitachi Chemical
3.10.6.Glass: an excellent filter substrate?
3.10.7.Glass-based single-layer transmission-line filters
3.11.Summary
3.11.1.Substrate properties and process options
3.11.2.Benchmark of different substrates
3.11.3.Substrates options for mmWave filters
4.LOW-LOSS MATERIALS FOR ADVANCED PACKAGE
4.1.Introduction
4.1.1.Roadmap of Df/Dk across all packaging materials as we transition from 4G to sub-6GHz 5G to mmwave 5G
4.1.2.Overview of high density package materials
4.1.3.Low-loss polymer materials for coating in packages
4.1.4.Possible low-loss substrates for mmWave 5G advanced packages
4.1.5.Flexible substrate has became a trend
4.1.6.Low-loss substrate materials as for package
4.2.Overview of advanced packaging
4.2.1.Top players in the electronic packaging business by revenue
4.2.2.Electronic packaging: the rise of China
4.2.3.IC sales and global GDP
4.2.4.Split of advanced electronic packaging market by packaging type
4.2.5.From simple to complex electronic packages: technology evolution
4.3.SiP (system-in-package) introduction
4.3.1.What is SiP or System-in-Package
4.3.2.SiP vs SoC vs SoB
4.3.3.SiP and different packaging techniques
4.3.4.The SiP Tool box
4.3.5.A rising trend towards more SiP content
4.4.General trends in size and feature of boards and packages
4.4.1.Classification of packages by power level
4.4.2.Resolution and layer thickness going from wafer to RDL to substrate to board
4.4.3.Increasing resolution and complexity and reducing thickness of PCBs/SLP
4.4.4.Trends in laser technology and pattern formation techniques for HDI PCB, SLP, and package
4.5.Towards AiP (antenna in a package)
4.5.1.2G to mmwave 5G: from body or case integrated to flex PCB integrated to antenna in package
4.5.2.Is antenna on a chip possible?
4.5.3.Antenna on a package (AoP) with metal stamping
4.5.4.Antenna on a package (AoP) with laser direct structuring
4.5.5.Qualcomm: Antenna in package design (antenna on a substrate with flip chipped ICs)
4.5.6.Georgia Tech: SiP with antenna on a glass-core substrate
4.5.7.Intel: SiP with dual-polarized patch array antenna
4.5.8.JCET: PoP or antenna substrate on WLP approach
4.5.9.ASE: SiP with AiP based on FOWLP and using through-mold via
4.5.10.AiP FCBGA vs AiP FOWLP
4.5.11.eWLP vs flip chip and BGA in terms of insertion loss
4.5.12.TSMC: InFO AiP showing low-loss for mmWave
4.5.13.TDK: AiP based on LTCC
4.5.14.Wideband low-profile antennas for 5G AiP application by IMECAS
4.6.EMC/MUF
4.6.1.What are EMC and MUFs?
4.6.2.Epoxy Molding Compound (EMC)
4.6.3.Key parameters to compare EMC materials
4.6.4.Dielectric constant is another important factor for 5G applications
4.6.5.Innovation for low dielectric constant and dissipation factor epoxy resin
4.6.6.Some commercial EMC with low dielectric constant
4.6.7.Epoxy resin: parameters of different resins and hardener systems
4.6.8.Epoxy resin: price and market
4.6.9.Fillers
4.6.10.EMC is important for warpage management
4.6.11.Molded underfill (MUF)
4.6.12.MUF is a key material for flip clip molding technology
4.6.13.Liquid molding compound for compression molding
4.6.14.Supply chain for EMC materials
4.6.15.EMC innovations trends for 5G applications
4.6.16.High warpage control EMC are needed for FO-WLP
4.6.17.Possible solutions for warpage and die shift
4.6.18.Sumitomo Bakelite
4.6.19.Kyocera: Epoxy Molding Compounds for semiconductors
4.6.20.Summary of EMC provided by Kyocera
4.6.21.Samsung SDI
4.6.22.Hitachi Chemical
4.6.23.Packaging materials product line up in Hitachi Chemical
4.6.24.A sulfur-free EMC by Hitachi Chemical
4.6.25.KCC
4.7.Ink based EMI shielding
4.7.1.What is electromagnetic interference shielding and why it matters to 5G
4.7.2.Challenges and key trends for EMI shielding for 5G devices
4.7.3.Package-level EMI shielding
4.7.4.Conformal coating: increasingly popular
4.7.5.Has package-level shielding been adopted?
4.7.6.Examples of package-level shielding in smartphones
4.7.7.Which suppliers and elements have used EMI shielding?
4.7.8.Overview of conformal shielding process
4.7.9.What is the incumbent process for PVD sputtering?
4.7.10.Screen printed EMI shielding: process and merits
4.7.11.Spray-on EMI shielding: process and merits
4.7.12.Suppliers targeting ink-based conformal EMI shielding
4.7.13.Henkel: performance of EMI ink
4.7.14.Duksan: performance of EMI ink
4.7.15.Ntrium: performance of EMI ink
4.7.16.Clariant: performance of EMI ink
4.7.17.Fujikura Kasei: performance of EMI ink
4.7.18.Spray machines used in conformal EMI shielding
4.7.19.Particle size and morphology choice
4.7.20.Ink formulation challenges: thickness and Ag content
4.7.21.Ink formulation challenges: sedimentation prevention
4.7.22.EMI shielding: inkjet printed particle-free Ag inks
4.7.23.Agfa: EMI shielding prototype
4.7.24.Has there been commercial adoption of ink-based solutions?
4.7.25.Compartmentalization of complex packages is a key trend
4.7.26.The challenge of magnetic shielding at low frequencies
4.7.27.Value proposition for magnetic shielding using printed inks
5.FORECAST 2021-2030
5.1.Low-loss materials areas forecast in 5G by frequency
5.2.Low-loss materials areas forecast in 5G by market segments
5.3.Low-loss materials areas forecast in 5G by types of materials
5.4.Low-loss materials forecast in 5G by revenue
5.5.5G base station installation forecast by frequency
5.6.5G base station instalment number forecast by type of cell (macro, micro, pico/femto)
5.7.Low-loss materials areas forecast in 5G base station by frequency
5.8.Low-loss materials areas forecast in 5G base station by components
5.9.Low-loss materials areas forecast in 5G base station by materials types
5.10.5G mobile shipment units
5.11.Low-loss materials areas forecast in 5G smartphone by unit number and area
5.12.Low-loss materials areas forecast in 5G smartphones by material types
5.13.Shipment of customer promised equipment and hotspots by units
5.14.Low-loss materials areas forecast in 5G CPE and hotspots by frequency
5.15.Low-loss materials areas forecast in 5G CPE and hotspots by material types
 

レポート概要

スライド 337
フォーキャスト 2031
ISBN 9781913899110
 
 
 
 

Subscription Enquiry