This report is no longer available. Click here to view our current reports or contact us to discuss a custom report.
If you have previously purchased this report then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Purpose of this report |
1.2. | Key conclusions |
1.3. | Comparison of zero-emission air taxis and regional aircraft technologies selling 2021-2041 |
1.4. | The solar option |
1.5. | Energy independent smart cities and their eCTOL and eVTOL manned aircraft |
1.6. | eVTOL in detail |
1.6.1. | What is an eVTOL aircraft? |
1.6.2. | eVTOL Architectures |
1.6.3. | Why eVTOL Aircraft? |
1.6.4. | eVTOL getting off the ground |
1.6.5. | Conclusions on air taxi time saving |
1.6.6. | Huge companies investing in eVTOL |
1.6.7. | Other start-ups attracting large funding |
1.6.8. | When will the first eVTOL air taxis launch? |
1.6.9. | eVTOL as urban mass mobility? |
1.6.10. | Where is eVTOL air taxi advantage? |
1.6.11. | Value of autonomous eVTOL flight |
1.7. | Battery requirements and improvement |
1.8. | Li-ion Chemistry Snapshot: 2020, 2025, 2030 |
1.9. | Motor / powertrain requirements |
1.10. | Composite material requirements |
1.11. | Infrastructure requirements |
1.12. | Electric aircraft roadmaps |
1.12.1. | IDTechEx detailed manned electric aircraft roadmap 2021-2041 |
1.12.2. | Boeing and NASA electric aircraft roadmaps to 2050 |
1.12.3. | Airbus and United Technologies "More Electric Aircraft MEA roadmap to 2040 |
1.12.4. | Safran electric aircraft roadmap to 2050 |
1.12.5. | Siemens electric aircraft roadmap to 2050 |
1.13. | IDTechEx projected range and climb |
1.14. | IDTechEx MTOW vs range projection |
1.15. | Market forecasts 2021-2041 |
1.15.1. | General aviation global sales units 2021-2041 |
1.15.2. | General aviation global value market 2021-2041 |
1.15.3. | Fixed-wing CTOL zero-emission aircraft under 20PAX number 2021-2041 |
1.15.4. | Fixed-wing CTOL zero-emission aircraft under 20PAX unit price 2021-2041 |
1.15.5. | Fixed-wing CTOL zero-emission aircraft under 20PAX $bn value market 2021-2041 |
1.15.6. | Fixed wing CTOL zero-emission aircraft 20-100PAX global number 2021-2041 |
1.15.7. | Fixed wing CTOL zero-emission aircraft 20-100PAX global unit value 2021-2041 |
1.15.8. | Fixed wing CTOL zero emission aircraft 20-100PAX value market 2021-2041 |
1.15.9. | eVTOL Forecast Summary |
1.15.10. | eVTOL air taxi sales forecast units 2018-2041 |
1.15.11. | eVTOL air taxi market revenue forecast $ billion 2018-2041 |
1.15.12. | Regional share of zero emission aircraft sales value market 2021-2041 |
1.16. | Historical statistics |
1.16.1. | GAMA General Aviation aircraft sales and market Size |
1.16.2. | GAMA data for General Aviation global market |
1.16.3. | Bye Aerospace appraisal of pent-up general aviation demand |
1.16.4. | Top 5 General Aviation OEMs By Airplane Type |
1.16.5. | EASA eVTOL market value estimates 2035 |
1.16.6. | Worldwide helicopter fleet |
1.16.7. | GAMA General Aviation helicopter sales |
1.16.8. | Helicopter OEMs |
2. | INTRODUCTION |
2.1. | Bumble Bees and Electric Aircraft Cannot Fly |
2.2. | Large single aisle aircraft offer the largest emission gains |
2.3. | Coming from both ends - small pure electric PEV (BEV) and large more-electric MEA |
2.4. | Run before you can walk? |
2.5. | Powertrain options |
2.6. | Radical advances in electric thrust 2021-2041 |
2.7. | Achieving cost parity - small comes first |
2.8. | Regulation, legislation, certification |
2.9. | Involvement of top aerospace manufacturers |
2.10. | Top 5 aerospace system suppliers by revenue |
2.10.1. | General Electric USA |
2.10.2. | Honeywell |
2.10.3. | Rolls-Royce UK |
2.10.4. | Raytheon Technologies Corp. USA |
2.10.5. | SAFRAN France |
2.11. | Distributed Electric Propulsion |
2.12. | The Dream of Urban Air Mobility |
2.13. | Advanced Air Mobility |
2.14. | eVTOL Applications |
2.15. | Beating current general aviation aircraft |
2.16. | Why helicopters are poor for UAM |
2.17. | Range and Endurance Limitations of eVTOL |
2.18. | What is making eVTOL possible? |
2.19. | eVTOL Start-Up Investment |
2.20. | Materials and energy harvesting integration |
2.20.1. | Key Challenges for Composites |
2.20.2. | Energy harvesting options for aircraft: widening choice |
2.21. | Retrofit |
2.22. | Infrastructure and transport integration |
3. | BATTERY ELECTRIC FIXED WING AIRCRAFT |
3.1. | Overview |
3.2. | Bye Aerospace USA |
3.3. | Airbus Europe |
3.4. | Ampaire Tailwind USA |
3.5. | Aura Aero France |
3.6. | Equator Aircraft Norway |
3.7. | Eviation Aircraft Israel |
3.8. | Flying Ship Company USA |
3.9. | Fly Nano Finland |
3.10. | H55 Switzerland |
3.11. | Heart Aerospace Sweden |
3.12. | Luminati Aerospace USA |
3.13. | NASA |
3.13.1. | Requirement study |
3.13.2. | Distributed thrust: X57 Maxwell |
3.13.3. | Cryogenic hydrogen fuel cell |
3.14. | PC-Aero / Elektra Solar/ SolarStratos Germany Switzerland |
3.15. | Pipistrel Slovenia |
3.16. | Raytheon United Technologies X-Plane USA |
3.17. | RDC Aqualines Russia |
3.18. | Regent USA |
3.19. | Rolls Royce, Tecnam, Wideroe - P Volt UK, Norway |
3.20. | Rolls Royce ACCEL and other projects UK |
3.21. | Solar Flight USA |
3.22. | Wright Electric USA |
3.23. | Others |
4. | BATTERY ELECTRIC EVTOL AIRCRAFT |
4.1. | Airbus Europe |
4.2. | Archer Aviation USA |
4.3. | Bell Textron USA |
4.4. | BETA Technologies USA |
4.5. | Boeing PAV intermediate fixed wing/ VTOL USA |
4.6. | EHang China |
4.7. | Embraer: Eve (EmbraerX) Brazil |
4.8. | Hyundai: S-A1 Korea |
4.9. | Jaunt Air Mobility: Journey Air Taxi USA |
4.10. | Joby Aviation USA |
4.11. | Lilium Germany |
4.12. | Moog: SureFly USA |
4.13. | SkyDrive: SD-XX Japan |
4.14. | Volocopter Germany |
5. | FUEL CELL ELECTRIC AIRCRAFT |
5.1. | Overview |
5.2. | Airbus fuel cell pods |
5.3. | Fuel cell projects of the past |
5.4. | Proton Exchange Membrane PEM fuel cells |
5.5. | ZeroAvia UK |
5.6. | NASA cryogenic |
5.7. | Lange Research Germany |
5.8. | Fuel Cell eVTOL |
5.9. | Conclusions for PEM eVTOL |
6. | HYBRID ELECTRIC AIRCRAFT |
6.1. | Overview |
6.2. | Rolls Royce hybrid powertrains UK |
6.3. | Hybrid aircraft |
6.3.1. | eSAT "Silent Air Taxi Germany |
6.3.2. | Faradair BEHA UK |
6.3.3. | VoltAero France |
7. | JOURNEY USE-CASES & OPTIMIZATION: WHERE EVTOL HAS AN ADVANTAGE |
7.1. | Will eVTOL Taxis Reduce Journey Time? |
7.2. | eVTOL Multicopter vs Robotaxi: 10km Journey |
7.3. | eVTOL vs Robotaxi: Example 10km Journey |
7.4. | eVTOL Multicopter vs Robotaxi: 40km Journey |
7.5. | eVTOL vs Robotaxi: Example 40km Journey |
7.6. | Multicopter eVTOL vs Robotaxi: 100km Journey |
7.7. | Vectored Thrust eVTOL vs Robotaxi: 100km Journey |
7.8. | eVTOL vs Robotaxi: Example 100km Journey |
7.9. | Important Factors for an Air Taxi Time Advantage |
7.10. | Conclusions on Air Taxi Time Saving |
8. | IDTECHEX EVTOL COST ANALYSIS |
8.1. | TCO Analysis: eVTOL Taxi $/50km Trip (Base Case) |
8.2. | eVTOL vs Helicopter Operating Cost |
8.3. | eVTOL Aircraft Upfront Cost |
8.4. | eVTOL Operational Fuel Cost Savings |
8.5. | The Value of Autonomous Flight |
8.6. | TCO vs Helicopters Uber Air $/mile |
8.7. | Sensitivity to Battery Cost and Performance |
8.8. | Sensitivity to Upfront / Infrastructure Cost |
8.9. | Sensitivity to Average Trip Length |
8.10. | TCO Analysis: $/15km Trip: Multicopter eVTOL Design |
8.11. | TCO $/15km Autonomous Trip: Multicopter vs Base case |
9. | EVTOL ARCHITECTURES |
9.1. | World eVTOL Aircraft Directory |
9.2. | Geographical Distribution of eVTOL Projects |
9.3. | Key Players: eVTOL Air Taxi |
9.4. | Main eVTOL Architectures |
9.5. | eVTOL Architecture Choice |
9.6. | eVTOL Multicopter / Rotorcraft |
9.7. | Multicopter: Flight Modes |
9.8. | Multicopter / Rotorcraft: Key Players Specifications |
9.9. | Benefits / Drawbacks of Multicopters |
9.10. | eVTOL Lift + Cruise |
9.11. | Lift + Cruise: Flight Modes |
9.12. | Lift + Cruise: Key Players Specifications |
9.13. | Benefits / Drawbacks of Lift + Cruise |
9.14. | Vectored Thrust eVTOL |
9.15. | Vectored Thrust: Flight Modes |
9.16. | eVTOL Vectored Thrust: Tiltwing |
9.17. | Tiltwing: Key Player Specifications |
9.18. | Benefits / Drawbacks of Tiltwing |
9.19. | eVTOL Vectored Thrust: Tiltrotor |
9.20. | Tiltrotor: Key Player Specifications |
9.21. | Benefits / Drawbacks of Tiltrotor |
9.22. | When will the First eVTOL Air Taxis Launch? |
9.23. | Manned Air Taxi eVTOL Test Flights |
9.24. | Unmanned Air Taxi eVTOL Model Test Flights |
9.25. | Range and Cruise Speed: Electric eVTOL Designs |
9.26. | Hover Lift Efficiency and Disc Loading |
9.27. | Hover and Cruise Efficiency by eVTOL Architecture |
9.28. | Complexity, Criticality & Cruise Performance |
9.29. | Comparison of eVTOL Architectures |
10. | PROGRAMS SUPPORTING EVTOL DEVELOPMENT |
10.1. | Uber Elevate - Joby Aviation |
10.2. | Driving Air Taxi Progress: Uber Elevate |
10.3. | Uber Elevate: Strategic OEM Vehicle Partnerships |
10.4. | Uber Air Vehicle Requirements |
10.5. | Uber Air Mission Profile |
10.6. | U.S. Airforce eVTOL Support - Agility Prime |
10.7. | US Airforce - Agility Prime |
10.8. | Agility Prime: Advance Air Mobility Ecosystem |
10.9. | NASA: Advanced Air Mobility National Campaign |
10.10. | Groupe ADP eVTOL Test Area |
10.11. | China's Unmanned Civil Aviation Zones |
10.12. | UK's Future Flight Challenge |
10.13. | Varon Vehicles: UAM in Latin America |
11. | BATTERIES FOR ELECTRIC AIRCRAFT |
11.1. | Overview |
11.2. | What is a Li-ion Battery? |
11.3. | Electrochemistry Definitions |
11.4. | The Battery Trilemma |
11.5. | Battery Wish List for an eVTOL |
11.6. | More Than One Type of Li-ion Battery |
11.7. | eVTOL Battery Requirements |
11.8. | Airbus Minimum Battery Requirement |
11.9. | eVTOL Battery Range Calculation |
11.10. | Aerospace Battery Pack Sizing |
11.11. | Importance of Battery Pack Energy Density |
11.12. | Importance of eVTOL Lift/Drag to Range |
11.13. | Uber Air Proposed Battery Requirements |
11.14. | Battery Size |
11.15. | Batteries Packs: More than Just Cells |
11.16. | Eliminating the Battery Module |
11.17. | eVTOL Batteries: Specific Energy Vs Discharge Rates |
11.18. | Battery500 |
11.19. | E-One Moli Energy Corp. |
11.20. | Electric Power Systems (EPS): Li-ion Batteries |
11.21. | Electric Power Systems (EPS) |
11.22. | Amprius Inc: Silicon Anode |
11.23. | Leclanche Energy Density Targets |
11.24. | Moving on from Li-ion? |
11.25. | Lithium-based Batteries Beyond Li-ion |
11.26. | Li-ion Chemistry Snapshot: 2020, 2025, 2030 |
11.27. | Lithium-Sulfur Batteries (Li-S) |
11.28. | Advantages of LSBs |
11.29. | Li-sulfur energy density |
11.30. | OXIS Energy: Lithium-Sulfur Batteries |
11.31. | Lithium-Metal and Solid-State Batteries (SSB) |
11.32. | Solid Energy Systems - Solid State Batteries |
11.33. | Sion Power Corporation: Lithium-Metal Battery |
11.34. | Cuberg: Lithium-Metal Batteries |
11.35. | Battery Chemistry Comparison for eVTOL |
11.36. | Battery Fast Charging |
11.37. | Battery Swapping |
11.38. | Distributed Battery Modules |
11.39. | eVTOL Battery Cost |
11.40. | Development Focus for eVTOL Batteries |
12. | ELECTRIC MOTORS NEEDED |
12.1. | eVTOL Motor / Powertrain Requirements |
12.2. | eVTOL Aircraft Motor Power Sizing |
12.3. | eVTOL Power Requirement: kW Estimate |
12.4. | eVTOL Power Requirement |
12.5. | eVTOL Power Requirement: kW Estimate |
12.6. | Electric Motors and Distributed Electric Propulsion |
12.7. | eVTOL Number of Electric Motors |
12.8. | Motor Sizing |
12.9. | Electric Motors Designs |
12.10. | Comparison of Motor Construction and Merits |
12.11. | Brushless DC Motors (BLDC) |
12.12. | BLDC Motors: Advantages, Disadvantages |
12.13. | BLDC: Benchmarking |
12.14. | Permanent Magnet Synchronous Motors (PMSM) |
12.15. | PMSM: Advantages, Disadvantages |
12.16. | PMSM: Benchmarking |
12.17. | Axial Flux Motors |
12.18. | Why Axial Flux Motors in eVTOL? |
12.19. | Yoked or Yokeless Axial Flux |
12.20. | Axial Flux Motors - Interesting Players |
12.21. | List of Axial Flux Motor Players |
12.22. | YASA |
12.23. | Rolls-Royce / Siemens |
12.24. | EMRAX |
12.25. | ePropelled |
12.26. | H3X |
12.27. | MAGicALL |
12.28. | Magnix |
12.29. | MGM COMPRO |
12.30. | SAFRAN |
12.31. | Case-studies |
13. | STRUCTURAL ELECTRONICS AND ENERGY HARVESTING |
13.1. | Learning from progress on land |
13.2. | Colloidal quantum dot spray on solar |
13.3. | Multi-mode energy harvesting |
13.4. | Harvesting technologies now and in future for air vehicles |
13.5. | Mechanical with electrical energy independent vehicles |
13.6. | Systems for EIEVs |
スライド | 396 |
---|---|
フォーキャスト | 2041 |
ISBN | 9781913899431 |