1. | EXECUTIVE SUMMARY |
1.1. | Micro-LED Displays 2020-2030 |
1.2. | Abbreviation |
1.3. | Executive Summary |
1.4. | What is the report about and who should read it? |
1.5. | Existing large mini-/micro-LED display announcements |
1.6. | Expectation of future displays |
1.7. | Status of OLED |
1.8. | Strategies of QDs in display |
1.9. | Characteristic comparison of different display technologies |
1.10. | Horizontal comparison |
1.11. | Why Micro-LED Displays? |
1.12. | Micro-LED value propositions compared with LCD, OLED, QD |
1.13. | Importance of identifying core value propositions |
1.14. | Core value propositions of µLED displays 1 |
1.15. | Core value propositions of µLED displays 2 |
1.16. | Core value propositions of µLED displays 3 |
1.17. | Core value propositions of µLED displays 4 |
1.18. | Core value propositions of µLED displays 5 |
1.19. | Analysis of micro-LED's value propositions |
1.20. | Influence of resolution for applications |
1.21. | Micro-LED display types |
1.22. | Potential applications for micro-LED displays |
1.23. | Matrix analysis |
1.24. | Display requirements for XR applications |
1.25. | Application analysis: Augmented/mixed reality |
1.26. | Application analysis: Virtual reality |
1.27. | Application analysis: Large video displays |
1.28. | Application analysis: Televisions and monitors |
1.29. | Application analysis: Automotive displays |
1.30. | Application analysis: Mobile phones |
1.31. | Application analysis: Smart watches and wearables |
1.32. | Application analysis: Tablets and laptops |
1.33. | Micro-LED application roadmap |
1.34. | Emerging displays enabled by micro-LED technology |
1.35. | Micro-LED display fabrication flowchart |
1.36. | Technologies of micro-LED displays |
1.37. | Challenge transition for micro-display manufacturing |
1.38. | Current achievements of micro-LED displays |
1.39. | Summary of challenges for micro-LED displays |
1.40. | Issues with RGB micro-LED chips |
1.41. | Micro-LED performance summary |
1.42. | Full colour realization |
1.43. | Quantum dots for µLEDs |
1.44. | What kind of role are mini LEDs playing? |
1.45. | Regional development: Taiwan |
1.46. | Regional development: Mainland China |
1.47. | Regional development: Japan & Korea |
1.48. | Regional development: Europe |
1.49. | Regional development: US |
1.50. | Supply chain status |
1.51. | Supply chain reshuffle |
1.52. | Possible supply chain for micro-LED displays |
1.53. | Scenarios of supply chain dominance |
1.54. | Supply chain influenced by trade war and coronavirus |
2. | INTRODUCTION TO MICRO-LED DISPLAY |
2.1. | Introduction to Micro-LED Display |
2.2. | From traditional LEDs... |
2.3. | ...to Micro-LEDs |
2.4. | Comparisons of LEDs for displays |
2.5. | Correlations between mini-LED, micro-LED and fine pitch LED displays |
2.6. | From traditional LEDs to micro-LED |
2.7. | Display types based on micro-LEDs |
2.8. | Advantages of AM micro-LED micro-displays |
2.9. | LED size definitions |
2.10. | Micro-LED displays: size is an important feature |
2.11. | Micro LED displays: beyond the size |
2.12. | A better definition? |
2.13. | Micro-LED display panel structure |
3. | EPITAXY AND CHIP MANUFACTURING |
3.1. | Introduction to light-emitting diodes |
3.1.1. | History of solid-state lighting |
3.1.2. | What is an LED? |
3.1.3. | How does an LED work? |
3.1.4. | Homojunction vs. heterojunction |
3.1.5. | LEDs by package technique 1 |
3.1.6. | LEDs by package technique 2 |
3.1.7. | Typical LED and packaged LED sizes |
3.1.8. | Comparison between SMD and COB |
3.1.9. | COB for displays |
3.1.10. | List of global major LED companies with introduction |
3.2. | Epitaxy |
3.2.1. | Bandgap vs. lattice constant for III-V semiconductors |
3.2.2. | Materials for commercial LED chips 1 |
3.2.3. | Materials for commercial LED chips 2 |
3.2.4. | Green gap |
3.2.5. | Epitaxy substrate |
3.2.6. | Wafer patterning 1 |
3.2.7. | Wafer patterning 2 |
3.2.8. | Wafer patterning 3 |
3.2.9. | Epitaxy methods |
3.2.10. | Metal organic chemical vapor deposition |
3.2.11. | Pros and cons of MOCVD |
3.2.12. | Epitaxial growth requirement |
3.2.13. | Offering from Aixtron and Veeco |
3.2.14. | Veeco's offering |
3.2.15. | Engineered substrate |
3.2.16. | Wafer uniformity 1 |
3.2.17. | Wavelength uniformity 2 |
3.2.18. | Solutions for wafer nonuniformity |
3.3. | Chip manufacturing |
3.3.1. | LED fabrication flowchart |
3.3.2. | Typical RGB LED designs |
3.3.3. | LED chip structures 1 |
3.3.4. | LED chip structures 2 |
3.3.5. | LED chip structure illustrations |
3.3.6. | Future of the LED chip structure |
3.3.7. | Epi-film transfer |
3.3.8. | Fabrication of vertical GaN-LEDs |
3.4. | Micro-LED Performances |
3.4.1. | Influence of micro-LED performance |
3.4.2. | EQE of micro-LED versus current density 1 |
3.4.3. | EQE of micro-LED versus current density 2 |
3.4.4. | Efficiency droop |
3.4.5. | Bowing of wavelength shift |
3.4.6. | Size dependence of micro-LEDs 1 |
3.4.7. | Size dependence of micro-LEDs 2 |
3.4.8. | Size dependence of micro-LEDs 3 |
3.4.9. | Efficiencies and requirement of RGB micro-LEDs |
3.4.10. | Surface recombination |
3.4.11. | Sidewall effect |
3.4.12. | Efficiency improvement |
4. | TRANSFER AND ASSEMBLY |
4.1.1. | Introduction |
4.1.2. | Mass transfer and assembly technologies |
4.1.3. | Requirements of mass transfer |
4.1.4. | Chiplet mass transfer types |
4.2. | Chiplet Mass Transfer |
4.2.1. | Introduction to chiplet mass assembly |
4.2.2. | Chiplet mass transfer scenario 1 |
4.2.3. | Chiplet mass transfer scenario 2 |
4.2.4. | Comparison of mass transfer technologies |
4.2.5. | Comparison of transfer technologies of different companies |
4.2.6. | Transfer yield |
4.3. | Fine pick and place |
4.3.1. | Overview of Elastomeric stamp |
4.3.2. | Transfer process flow |
4.3.3. | Elastomeric stamp: pros and cons |
4.3.4. | Stamp yield vs. defect density |
4.3.5. | Key technologies for micro-LED mass transfer |
4.3.6. | Substrate treatment |
4.3.7. | Kinetic control of the elastomeric stamp adhesion |
4.3.8. | Elastomeric stamp |
4.3.9. | Pitch size determination |
4.3.10. | X-Celeprint |
4.3.11. | µLED fabrication |
4.3.12. | µLEDs from sapphire substrate |
4.3.13. | Passive matrix displays made by micro-transfer printing |
4.3.14. | Passive matrix μLED display fabrication 1 |
4.3.15. | Passive matrix μLED display fabrication 2 |
4.3.16. | Active matrix displays made by micro-transfer printing |
4.3.17. | Active matrix μLED display fabrication |
4.3.18. | Automated micro-transfer printing machinery |
4.3.19. | Capillary-assisted transfer printing |
4.3.20. | Mikro Mesa: Transfer technology |
4.3.21. | Mikro Mesa: Transfer flowchart 1 |
4.3.22. | Mikro Mesa: Transfer flowchart 2 |
4.3.23. | Mikro Mesa: Transfer stamp |
4.3.24. | Mikro Mesa: Transfer design target |
4.3.25. | PlayNitride: Mass transfer for micro-LED chips |
4.3.26. | Visionox 1 |
4.3.27. | Visionox 2 |
4.3.28. | ITRI: Chip fabrication |
4.3.29. | ITRI's mass transfer process |
4.3.30. | ITRI's transfer module |
4.3.31. | Overview of electrostatic array |
4.3.32. | Apple/LuxVue 1 |
4.3.33. | Apple/LuxVue 2 |
4.3.34. | VerLASE's large area assembly platform |
4.3.35. | Interposer idea |
4.4. | Self assembly |
4.4.1. | Introduction of fluidic-assembly |
4.4.2. | eLux: introduction |
4.4.3. | Fabrication of micro-LED chip array |
4.4.4. | eLux's fluidic assembly |
4.4.5. | eLux's display prototypes |
4.4.6. | eLux's supply chain |
4.4.7. | eLux's core patent technology 1 |
4.4.8. | eLux's core patent technology 2 |
4.4.9. | eLux's core patent technology 3 |
4.4.10. | eLux's core patent technology 4 |
4.4.11. | eLux's core patent technology 5 |
4.4.12. | eLux's core patent technology 6 |
4.4.13. | Image quality comparison |
4.4.14. | SWOT analysis of eLux's technology |
4.4.15. | Other fluidic assembly techniques |
4.4.16. | Fluidic assembly (physical): overview |
4.4.17. | Alien |
4.4.18. | Alien's fluidic self assembly technology |
4.4.19. | Self-assembly based on shape/geometry matching |
4.4.20. | Shape-based self assembly |
4.4.21. | Fluidic assembly (electrophoretic): overview |
4.4.22. | Electrophoretic positioning of LEDs |
4.4.23. | PARC's xerographic micro-assembly Printing 1 |
4.4.24. | PARC's xerographic micro-assembly Printing 2 |
4.4.25. | Fluidic-assembly (surface energy): overview |
4.4.26. | Mechanism of surface-tension-driven fluidic assembly |
4.4.27. | Surface tension based fluidic assembly 1 |
4.4.28. | Surface tension based fluidic assembly 2 |
4.4.29. | Surface tension based fluidic assembly 3 |
4.4.30. | Surface tension based fluidic assembly 4 |
4.4.31. | Fluidic-assembly (magnetic): overview |
4.4.32. | Magnetically-assisted assembly |
4.4.33. | Fluidic-assembly (photoelectrochemical): overview |
4.4.34. | Photoelectrochemically driven fluidic-assembly |
4.4.35. | Fluidic-assembly (combination): overview |
4.4.36. | Chip mounting apparatus |
4.4.37. | Summary of fluidic assembly |
4.4.38. | SelfArray |
4.5. | Laser enabled transfer |
4.5.1. | Overview of laser enabled transfer |
4.5.2. | Laser beam requirement |
4.5.3. | Uniqarta's parallel laser-enabled transfer technology 1 |
4.5.4. | Uniqarta's parallel laser-enabled transfer technology 2 |
4.5.5. | Uniqarta's parallel laser-enabled transfer technology 3 |
4.5.6. | Uniqarta's parallel laser-enabled transfer technology 4 |
4.5.7. | Uniqarta's parallel laser-enabled transfer technology 5 |
4.5.8. | QMAT's beam-addressed release technology |
4.5.9. | Optovate's technology 1 |
4.5.10. | Optovate's technology 2 |
4.5.11. | Coherent's approach |
4.5.12. | Toray's offering |
4.5.13. | Visionox's achievement |
4.6. | Other chiplet mass transfer techniques |
4.6.1. | Korean Institute of Machinery and Materials (KIMM) 1 |
4.6.2. | Korean Institute of Machinery and Materials (KIMM) 2 |
4.6.3. | VueReal's cartridge printing technique |
4.6.4. | VueReal's micro printer |
4.6.5. | Innovasonic's technology |
4.6.6. | Rohinni's technology |
4.6.7. | Two-step micro-transfer technology 1 |
4.6.8. | Two-step micro-transfer technology 2 |
4.6.9. | Two-step micro-transfer technology 3 |
4.6.10. | Two-step micro-transfer technology 4 |
4.6.11. | Micro-transfer using a stretchable film |
4.6.12. | Micro-pick-and-place |
4.7. | Monolithic Hybrid Integration |
4.7.1. | Monolithic integration |
4.7.2. | Flip-chip hybrid integration |
4.7.3. | Monolithic hybrid integration structure |
4.7.4. | Selective transfer by selective bonding-debonding |
4.7.5. | Pros and cons of monolithic hybrid integration |
4.7.6. | Players on monolithic hybrid integration |
4.8. | All-In-One Transfer |
4.8.1. | All-in-one CMOS driving |
4.8.2. | Pros and cons of all-in-one CMOS driving technique |
4.9. | Fully Monolithic Integration |
4.9.1. | Introduction of fully monolithic integration |
4.9.2. | JBD's integration technology |
4.9.3. | Lumiode approach |
4.9.4. | Lumiode approach, process details |
4.9.5. | Temperature performance for the crystallization |
4.9.6. | Wafer from Lumiode |
4.9.7. | Ostendo's approach |
4.9.8. | Ostendo's QPI structure |
4.10. | GaN on Silicon |
4.10.1. | GaN-on-Si for various application markets |
4.10.2. | GaN on silicon epi types |
4.10.3. | Challenges of GaN-on-Silicon epitaxy |
4.10.4. | Value propositions of GaN-on-Si 1 |
4.10.5. | Value propositions of GaN-on-Si 2 |
4.10.6. | GaN on sapphire vs. on silicon |
4.10.7. | GaN-on-Si approach |
4.10.8. | Is GaN-on-Si the ultimate option? |
4.10.9. | Players working on GaN micro-LEDs on silicon |
4.11. | Nanowires |
4.11.1. | Comparison between 2D and 3D micro-LEDs |
4.11.2. | GaN epitaxy on silicon substrate |
4.11.3. | Aledia process flow |
4.11.4. | Aledia's nanowire technology |
4.11.5. | Front size device technology |
4.11.6. | Nanowires growth on silicon substrate |
4.11.7. | Size influence on nanowire's efficiency |
4.11.8. | Native EL RGB nanowires |
4.11.9. | 3D technology for small-display applications |
4.11.10. | Micro-display enabled by nanowires and 3D integration |
4.11.11. | Future of the nanowire approach |
4.12. | Bonding and interconnection |
4.12.1. | Classification |
4.12.2. | Summary |
4.12.3. | Wire bonding and flip chip bonding |
4.12.4. | Interconnection by resin reflow |
4.12.5. | Microtube interconnections |
4.12.6. | Microtube fabrication |
4.12.7. | Transfer and interconnection process by microtubes |
5. | TESTING |
5.1. | Testing techniques |
5.2. | PL vs. EL testing |
5.3. | EL test by Tesoro Scientific 1 |
5.4. | EL test by Tesoro Scientific 2 |
5.5. | Camera-based microscopic imaging system |
5.6. | Inspection solution by Toray 1 |
5.7. | Inspection solution by Toray 2 |
5.8. | Instrument System's solution |
5.9. | PL+AOI |
5.10. | TTPCON's solution |
5.11. | Cathodoluminescence used for testing |
5.12. | Trends of testing |
6. | DEFECT MANAGEMENT |
6.1. | Introduction |
6.2. | Defect types |
6.3. | Redundancy |
6.4. | Repair 1 |
6.5. | Repair 2 |
6.6. | Laser micro trimming 1 |
6.7. | Laser micro trimming 2 |
6.8. | Defect compensation by QDs |
7. | MICRO-LED DISPLAY FULL-COLOUR REALIZATION |
7.1.1. | Strategies for full colour realization |
7.1.2. | RGB micro-LEDs vs. blue micro-LED + QD 1 |
7.1.3. | RGB micro-LEDs vs. blue micro-LED + QD 2 |
7.2. | Colour filters |
7.2.1. | Colour filters |
7.2.2. | Colour filter process flow: black matrix process |
7.2.3. | Colour filter process flow: RGB process 1 |
7.2.4. | Colour filter process flow: RGB process 2 |
7.3. | Optical lens synthesis |
7.3.1. | Full colour realized by optical lens synthesis |
7.3.2. | Full colour realization for projectors |
7.4. | Do phosphors work for micro-LED displays? |
7.4.1. | Introduction to phosphors 1 |
7.4.2. | Introduction to phosphors 2 |
7.4.3. | Requirements for phosphors in LEDs |
7.4.4. | Table of phosphor materials |
7.4.5. | Search for narrow FWHM red phosphors |
7.4.6. | Common and emerging red-emitting phosphors |
7.4.7. | Red phosphor options: TriGainTM from GE |
7.4.8. | Reliability of TriGain |
7.4.9. | Commercial progress of GE's narrowband red phosphor |
7.4.10. | Small sized PFS phosphor |
7.4.11. | Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor |
7.4.12. | Thermal stability of common RGY phosphors |
7.4.13. | Narrow band green phosphor |
7.4.14. | High performance organic phosphors |
7.4.15. | Toray's organic colour conversion film |
7.4.16. | Colour coverage of Toray's colour conversion films |
7.4.17. | Stability of Toray's colour conversion films |
7.4.18. | Response time feature of Toray's colour conversion films |
7.4.19. | Suppliers of phosphors |
7.5. | Quantum dot approach |
7.5.1. | Introduction to quantum dots |
7.5.2. | Quantum dots used for micro-LED displays |
7.5.3. | QDs vs. phosphors: particle size |
7.5.4. | QDs vs. phosphors: response time |
7.5.5. | QDs vs. phosphors: colour tunability |
7.5.6. | QDs vs. phosphors: stability |
7.5.7. | QDs vs. phosphors: FWHM |
7.5.8. | Pros and cons of QD converters |
7.5.9. | Basic requirements of QDs for micro-LED displays |
7.5.10. | Trade-off between efficiency and leakage |
7.5.11. | Efficiency drop and red shift |
7.5.12. | Thickness of the QD layer for absorption |
7.5.13. | Display structure with QDs |
7.5.14. | Polarizers, short-pass filters, and other additional layers? |
7.5.15. | QD converters for µLED displays |
7.5.16. | Photolithography process |
7.5.17. | Successive patterning of red and green QD of various sizes |
7.5.18. | Quantum-dots colour conversion layer |
7.5.19. | Inkjet printed QD 1 |
7.5.20. | Inkjet printed QD 2 |
7.5.21. | Full-colour emission of quantum-dot-based micro LED display by aerosol jet technology |
7.5.22. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 1 |
7.5.23. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 2 |
7.5.24. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 3 |
7.5.25. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 4 |
7.5.26. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 5 |
7.5.27. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 6 |
7.6. | Quantum well approach |
7.6.1. | Quantum wells |
7.6.2. | Conclusions |
8. | LIGHT MANAGEMENT |
8.1. | Light management approach summary |
8.2. | Layers to optimize current distribution for better light extraction |
8.3. | InfiniLED's approach to increase light extraction efficiency 1 |
8.4. | InfiniLED's approach to increase light extraction efficiency 2 |
8.5. | Methods to capture light output |
8.6. | Micro-catadioptric optical array for better directionality |
9. | BACKPLANES AND DRIVING |
9.1. | Backplane and driving options for Micro-LED displays |
9.2. | Introduction to metal oxide semiconductor field-effect transistors |
9.3. | Introduction to thin film transistors |
9.4. | Introduction to complementary metal oxide semiconductor |
9.5. | Introduction to backplane |
9.6. | TFT materials |
9.7. | Pixel driving for OLED |
9.8. | LCD pixel structure |
9.9. | TFT backplane |
9.10. | Passive matrix addressing |
9.11. | Passive driving structure |
9.12. | Active matrix addressing |
9.13. | Comparison between PM and AM addressing |
9.14. | Transistor-micro-LED connection design |
9.15. | Driving for micro-LEDs |
9.16. | PAM vs. PWM |
9.17. | Pulse width modulation |
9.18. | Driving voltage |
9.19. | RGB driver |
9.20. | Active matrix micro-LEDs with LTPS TFT backplane |
9.21. | Conclusion |
10. | COST ANALYSIS |
10.1. | Cost basics |
10.2. | Micro-LED cost vs. Die size |
10.3. | Cost assumption |
10.4. | Cost analysis |
10.5. | Economics of micro-LED: cost down paths |
11. | MARKET ANALYSIS |
12. | PLAYERS AND CASE STUDIES |
12.1. | Players discussed in this report |
12.2. | Aledia |
12.3. | Aledia: introduction |
12.4. | Scalability to larger silicon substrate |
12.5. | Aledia's quasi-fabless business model |
12.6. | Integration process of Aledia's WireLED display |
12.7. | Wafer uniformity of nanowires |
12.8. | Colour conversion of WireLEDs |
12.9. | Interconnection options |
12.10. | Aledia's display modules |
12.11. | ALLOS Semiconductors |
12.12. | ALLOS Semiconductors: introduction |
12.13. | Strain management and emission uniformity 1 |
12.14. | Strain management and emission uniformity 2 |
12.15. | Strain management |
12.16. | Aoto Electronics |
12.17. | Apple |
12.18. | Apple |
12.19. | AU Optronics |
12.20. | AU Optronics |
12.21. | AUO's LTPS TFT driven micro-LED display 1 |
12.22. | AUO's LTPS TFT driven micro-LED display 2 |
12.23. | CEA-Leti |
12.24. | CEA-Leti: introduction |
12.25. | Demos by hybridization technology |
12.26. | Display performance |
12.27. | Process of fabricating hybridization micro-displays |
12.28. | Process of fabricating monolithic micro-displays |
12.29. | Novel approach for monolithic display fabrication |
12.30. | EpiPix |
12.31. | Introduction of EpiPix |
12.32. | EpiPix's technique |
12.33. | glō |
12.34. | Introduction of glō |
12.35. | Glō's technology |
12.36. | Glō's prototypes |
12.37. | ITRI |
12.38. | ITRI development of micro-LEDs |
12.39. | ITRI's offering |
12.40. | Micro-LED device characteristics |
12.41. | Reliability test |
12.42. | ITRI's MicroLED displays |
12.43. | ITRI's transparent MicroLED displays |
12.44. | ITRI |
12.45. | Jade Bird Display |
12.46. | Jade Bird Display: introduction |
12.47. | Existing hybrid integration technology by flip chip techique |
12.48. | Device fabrication 1 |
12.49. | Device fabrication 2 |
12.50. | Device structure and architecture |
12.51. | micro-LEDs for the JBD's micro-displays |
12.52. | JBD's monochromatic AM micro-LED micro-displays |
12.53. | AM micro-LED with directional emission |
12.54. | Application: 3 colour LED projector |
12.55. | High PPI AM micro-LED micro-display |
12.56. | AM micro-LED chips |
12.57. | Prototype for AR/VR |
12.58. | Konka |
12.59. | Konka's efforts on Micro-LED displays |
12.60. | Kyocera |
12.61. | Kyocera: high PPI micro-LED display |
12.62. | Kyocera: display design |
12.63. | LG |
12.64. | Micro LED Signage |
12.65. | Lumens |
12.66. | Lumens' micro-LED displays |
12.67. | Lumen's prototypes |
12.68. | Lumiode |
12.69. | Lumiode: introduction |
12.70. | Lumiode approach, process details |
12.71. | Lumiode's micro-LED performance |
12.72. | Lumiode's device performance |
12.73. | Micro Nitride |
12.74. | Micro Nitride: Introduction |
12.75. | Micro Nitride's technology 1 |
12.76. | Micro Nitride's technology 2 |
12.77. | Mikro Mesa |
12.78. | About Mikro Mesa |
12.79. | Mikro Mesa's micro-LEDs |
12.80. | Mikro Mesa: Current injection |
12.81. | Nanjing CEC Panda FPD Technology |
12.82. | Introduction of CEC Panda |
12.83. | Micro-LED and oxide development of Panda |
12.84. | Plessey |
12.85. | Plessey: GaN-on-Silicon |
12.86. | Plessey's display development roadmap |
12.87. | LED manufacturing |
12.88. | Pixel development |
12.89. | RGB GaN on silicon |
12.90. | Plessey's core development |
12.91. | Prototype |
12.92. | PlayNitride |
12.93. | PlayNitride: Introduction |
12.94. | Role of PlayNitride at micro-LED ecosystem |
12.95. | PixeLED display structure |
12.96. | PlayNitride: Prototypes 1 |
12.97. | PlayNitride : Prototypes 2 |
12.98. | PlayNitride : Prototypes 3 |
12.99. | PlayNitride: Prototypes 4 |
12.100. | Rohinni |
12.101. | Introduction of Rohinni |
12.102. | Samsung |
12.103. | The Wall vs. The Window |
12.104. | LED Cinema Screen |
12.105. | Saphlux |
12.106. | Saphlux: introduction |
12.107. | NPQD technology |
12.108. | Sharp |
12.109. | Sharp: introduction |
12.110. | Process flow of Silicon Display |
12.111. | Display driver |
12.112. | Monolithic micro-LED array |
12.113. | Full colour realization |
12.114. | Prototypes made by Sharp |
12.115. | Sony |
12.116. | Sony: initial efforts |
12.117. | Sony: scalable display system |
12.118. | Sony: precise tiling 1 |
12.119. | Sony: precise tiling 2 |
12.120. | Sony: micro-LEDs |
12.121. | Sony: viewing angle advantages |
12.122. | Sony: active matrix driving with micro IC |
12.123. | Sony: HDR reproducibility |
12.124. | Sony: business strategy |
12.125. | Stan (Shenzhen) Technology |
12.126. | Stan Technology |
12.127. | TCL |
12.128. | The Cinema Wall |
12.129. | TFT backplane-based micro-LED displays |
12.130. | Visionox |
12.131. | Visionox's planning |
12.132. | VueReal |
12.133. | VueReal: introduction |
12.134. | VueReal: high efficient micro-LEDs |
12.135. | VueReal: Inspection |
12.136. | VueReal: curing |
12.137. | VueReal: prototypes |
13. | APPENDIX |
13.1. | Colours and pixels |
13.2. | What is resolution? |
13.3. | Pixel pitch and fill factor |
13.4. | EQE and IQE |
13.5. | 3D colour volume |
13.6. | LCD panel structure |
13.7. | Active matrix-LCD structure |