1. | EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. | Purpose and scope of this report |
1.2. | Methodology |
1.3. | Primary conclusions: markets |
1.4. | Primary conclusions: technology |
1.5. | Motor needs by type of powertrain |
1.6. | Forecasts 2019-2030 |
1.6.1. | Forecast overview 2019-2030 (applicational sectors) - vehicle number thousand |
1.6.2. | Forecast overview 2019-2030 (applicational sectors) - bnW |
1.6.3. | Forecasts 2019-2030: Construction - vehicle number thousand |
1.6.4. | Forecasts 2019-2030: Construction - bnW |
1.6.5. | Forecasts 2019-2030: Agriculture - number thousand |
1.6.6. | Forecasts 2019-2030: Agriculture - bnW |
1.6.7. | Forecasts 2019-2030: Mining - vehicle number thousand |
1.6.8. | Forecasts 2019-2030: Mining - bnW |
1.6.9. | Forecasts 2019-2030: Intralogistics - vehicle number thousand |
1.6.10. | Forecasts 2019-2030: Intralogistics - bnW |
1.6.11. | Forecasts 2019-2030: Airport & off-road - vehicle number thousand |
1.6.12. | Forecasts 2019-2030: Airport & off-road - bnW |
1.6.13. | Forecasts 2019-2030: Buses - vehicle number thousand |
1.6.14. | Forecasts 2019-2030: Buses - bnW |
1.6.15. | Forecasts 2019-2030: Trucks - vehicle number thousand |
1.6.16. | Forecasts 2019-2030: Trucks - bnW |
1.6.17. | Forecasts 2019-2030: Cars- vehicle number thousand |
1.6.18. | Forecasts 2019-2030: Cars- bnW |
1.6.19. | Forecasts 2019-2030: Light Electric Vehicles - vehicle number thousand |
1.6.20. | Forecasts 2019-2030: Light Electric Vehicles - bnW |
1.6.21. | Forecasts 2019-2030: Military- vehicle number thousand |
1.6.22. | Forecasts 2019-2030: Military- bnW |
1.6.23. | Forecasts 2019-2030: Drones - vehicle number thousand |
1.6.24. | Forecasts 2019-2030: Drones - bnW |
1.6.25. | Forecasts 2019-2030: Aircraft - vehicle number thousand |
1.6.26. | Forecasts 2019-2030: Aircraft - bnW |
1.6.27. | Forecasts 2019-2030: Trains - vehicle number thousand |
1.6.28. | Forecasts 2019-2030: Trains - bnW |
1.6.29. | Forecasts 2019-2030: Marine - vehicle number thousand |
1.6.30. | Forecasts 2019-2030: Marine - bnW |
1.6.31. | Forecasts 2019-2030: Home & other - vehicle number thousand |
1.6.32. | Forecasts 2019-2030: Home & other - bnW |
1.7. | EV motor technology split 2020 and 2030 |
1.7.1. | Construction sector |
1.7.2. | Agriculture sector |
1.7.3. | Mining and intralogistics sectors |
1.7.4. | Buses and trucks |
1.7.5. | Cars and car-like vehicles |
1.7.6. | Two wheel, military, drone |
1.7.7. | Manned aircraft, battery trains |
1.7.8. | Marine, home robot, other |
1.8. | Motor profitability by vehicle sector 2030 explained |
1.9. | Neodymium cost trends spell trouble |
1.9.1. | Boiling the frog |
1.9.2. | Permanent magnets more popular but eventually unnecessary? |
1.10. | Regional sales |
1.10.1. | China |
1.10.2. | Europe |
1.10.3. | USA |
1.11. | Motor technologies for cars: global EV market shares |
2. | INTRODUCTION |
2.1. | Electric motor construction: mainly internal rotor |
2.2. | Three operating principles compared |
2.3. | Electric motor subtypes important for EVs |
2.4. | EV motor benefits compared |
2.5. | EV applications for the three motor types |
2.6. | Motor choice for pure electric cars and vans |
2.7. | Electric motors for other pure electric vehicles |
2.8. | Technology choices - a closer look |
2.8.1. | Let us get technical |
2.8.2. | A deeper dive |
2.8.3. | Spectrum of choice: benefits, challenges, uses |
2.8.4. | PMAC vs BLDC technology |
2.8.5. | Conductor format, optimisation, integration |
3. | ELEVEN IMPORTANT TRENDS IN EV MOTORS 2020-2030 |
3.1. | Overview |
3.2. | Eleven trends |
3.2.1. | Increasing percentage of vehicle cost |
3.2.2. | Integration |
3.2.3. | Multifunction |
3.2.4. | Proliferation: vehicle has more motors |
3.2.5. | Much bigger motors needed |
3.2.6. | Vertical integration: Vehicle makers design their own motors |
3.2.7. | Less cooling |
3.2.8. | Voltage increase: |
3.2.9. | New principles of electrical propulsion |
3.2.10. | New materials: structural electronics |
3.2.11. | Acquisitions and partnerships |
4. | MOTOR DESIGN ISSUES |
4.1. | Trend to broad capability |
4.2. | Dana Corporation - TM4 |
4.3. | Company experience and designer preferences |
4.4. | Lessons from Tesla the automotive market leader |
4.4.1. | Overview |
4.4.2. | Trying to catch Tesla |
4.4.3. | Tesla 3 Permanent Magnet Switched Reluctance Motor |
4.4.4. | Motor design advice from Tesla |
4.5. | Progress with switched reluctance |
4.5.1. | Patent analysis |
4.5.2. | Visedo synchronous reluctance assistant |
4.5.3. | Advanced Electric Machines |
4.5.4. | Eco Motor Works Canada |
4.5.5. | Nidec Japan |
4.6. | EV induction motor advances |
4.6.1. | CCE Thyssen Krupp |
4.6.2. | Tesla improves induction motors |
4.7. | 48V hybrid vehicles: very large motor market emerging |
4.7.1. | Basic 48V mild hybrid: cleverer motor, stronger battery are key |
4.7.2. | Examples and timeline for cars |
4.7.3. | Ongoing incremental improvements at modest cost |
4.7.4. | Functions vs architectures |
4.7.5. | 48V full hybrid can be primitive or maximum benefit |
4.7.6. | Continental |
4.7.7. | Eaton 48V full hybrid truck |
4.7.8. | Mercedes integrated starter generator ISG mild hybrid |
4.7.9. | Audi |
4.7.10. | Bentley |
4.7.11. | Jaguar Land Rover |
4.7.12. | Schaeffler |
4.7.13. | Valeo, Hyundai Mobis, Delphi, Tenneco, Bosch, IFEVS |
5. | AXIAL FLUX FOR HIGH POWER-TO-WEIGHT RATIO |
5.1. | Chasing high power to weight ratio: history |
5.2. | Patent analysis: axial flux motors |
5.3. | Rolls Royce, Siemens, Yasa |
5.4. | AVID EVO claim 10 kW/kg: lands $70 million of orders |
5.5. | Equipmake reconfigured PM motor |
5.6. | Magnax axial flux |
6. | IN-WHEEL MOTORS NOW POPULAR |
6.1. | Overview |
6.1.1. | Widespread adoption at last: BYD, Olli |
6.1.2. | Protean 360 degree wheel |
6.2. | Lightyear axial flux in-wheel |
6.2.1. | Range sells cars |
6.2.2. | Less battery with in-wheel motors |
6.3. | Elaphe enabling 1000km on land |
6.4. | Nidec Japan |
7. | HEAVY DUTY EV MOTORS OFF-ROAD |
7.1. | Overview: Needs are different from on-road |
7.2. | Takeuchi TB216H hybrid mini excavator |
7.3. | All-electric Caterpillar excavator |
7.4. | Hyundai electric excavator |
7.5. | Asynchronous/ induction in mining vehicles |
7.6. | What next? |
7.7. | Military overview |
7.8. | Vehicles by Balquon, Alke, Polaris, Columbia, Hummer, Green Wheel, Quantum FCT |
7.9. | Larger military vehicles by BAE Systems, US DOD, Millenworks, Oshkosh |
7.10. | Latest progress |
7.10.1. | Autonomous off-road vehicles |
7.10.2. | Otokar armored vehicle Turkey |
7.10.3. | Nikola utility-task all-terrain vehicle USA |
7.10.4. | TARDEC USA |
7.10.5. | Arquus replacement for Humvee Sweden |
7.10.6. | GE, DARPA and QinetiQ US UK |
7.10.7. | GM Defense, Chevrolet Silverado USA |
7.10.8. | Fuel cell main battle tanks? |
7.11. | Electric boats and ships: a long history? |
7.11.1. | Marine Market Segments |
7.11.2. | Torqeedo: Moving Up to 100kW! |
7.11.3. | Torqeedo Inboards and Outboards |
7.11.4. | Key Growth Market: C&I Vessels |
7.11.5. | Focus of emissions regulation |
7.11.6. | Emission control areas (ECA) |
7.11.7. | Unprecedented global cap on Sulphur |
7.11.8. | World's First Pure Electric Container Ship |
8. | MOTOR CONTROL TECHNOLOGY |
8.1. | Overview |
8.2. | Major trends |
8.3. | Direct drive or transmission |
8.4. | View of Ultimate Transmissions |
8.5. | Power semiconductors are key |
8.6. | Examples |
8.7. | Proliferation drives simplification |
8.7.1. | Elimination of motor control |
8.7.2. | Shared components: University of Berlin, Infineon |
8.7.3. | Bidirectional Charge- and Traction-System (BCTS) Continental |
8.8. | Future 48V mild hybrid motor controllers: TT/ AB Microelectronics |
9. | ELECTRIC MOTORS FOR ELECTRIC VEHICLES DIRECTORY OF 194 COMPANIES |