1. | EXECUTIVE SUMMARY |
1.1. | The Growing EV Market and Need for Thermal Management |
1.2. | Optimal Temperatures for Multiple Components |
1.3. | Battery Thermal Management Competition |
1.4. | Thermal System Architecture |
1.5. | BEV Cars with Heat Pumps Forecast (units) |
1.6. | Coolant Fluids in EVs |
1.7. | Future Refrigerants - China, North America and Japan |
1.8. | PFAS Ban - Future Trend in Europe |
1.9. | Fluids per Vehicle Market Average 2023 and 2035 |
1.10. | Combined Fluid Forecasts for BEV & PHEV Cars 2015-2035 (volume) |
1.11. | Tier 1 Supplier Revenue 2023 |
1.12. | OEM's Developing Integrated Thermal Management In-house |
1.13. | Battery Thermal Management Strategy by OEM |
1.14. | Battery Thermal Management Strategy Forecast 2015-2035 (GWh) |
1.15. | Immersion Fluid Comparison: Thermal Conductivity and Specific Heat |
1.16. | IDTechEx Outlook for Immersion |
1.17. | Immersion Fluid Volume Forecast in Passenger Cars 2021-2035 (L) |
1.18. | Thermal Management Options in CAM Markets |
1.19. | Immersion Fluid Volume Forecast in CAM 2023-2035 (L) |
1.20. | TIM Pack and Module Overview |
1.21. | Material Options and Market Comparison |
1.22. | Thermal Conductivity Shift |
1.23. | TIM Use by Vehicle and by Year |
1.24. | TIM Mass Forecast for EV Batteries by TIM Type: 2021-2034 (kg) |
1.25. | Fire Protection Materials: Main Categories |
1.26. | Density vs Thermal Conductivity for Fire Protection Materials |
1.27. | Fire Protection Materials Forecast (kg) |
1.28. | Motor Thermal Management Competition |
1.29. | Motor Cooling Technology: OEM strategies |
1.30. | Motor Cooling Strategy Forecast 2015-2035 (units) |
1.31. | Power Electronics Material Evolution |
1.32. | Single Side, Dual Side, Indirect, and Direct Cooling |
1.33. | General Trend of TIMs in Power Electronics (1) |
1.34. | General Trend of TIMs in Power Electronics (2) |
1.35. | Advantages, Disadvantages and Drivers for Oil Cooled Inverters |
1.36. | Inverter Liquid Cooling Strategy Forecast (units): 2015-2035 |
1.37. | Access More With an IDTechEx Subscription |
2. | INTRODUCTION |
2.1. | The Growing EV Market and Need for Thermal Management |
2.2. | Electric Vehicle Definitions |
2.3. | Optimal Temperatures for Multiple Components |
2.4. | Battery Thermal Management Competition |
2.5. | Motor Thermal Management Competition |
2.6. | Power Electronics Thermal Management Competition |
3. | IMPACT OF TEMPERATURE AND THERMAL MANAGEMENT ON RANGE |
3.1. | Range Calculations |
3.2. | Impact of Ambient Temperature and Climate Control |
3.3. | Model Comparison Against Ambient Temperature |
3.4. | Model Comparison with Climate Control |
3.5. | Model Comparison with Climate Control |
3.6. | Summary |
4. | INNOVATIONS IN CABIN HEATING |
4.1. | Holistic Vehicle Thermal Management |
4.2. | Technology Timeline |
4.3. | What is a Heat Pump? |
4.4. | PTC vs Heat Pump |
4.5. | The Impact on EV Range |
4.6. | Examples of EVs with Heat Pumps |
4.7. | BEV Cars with Heat Pumps Forecast (units) |
4.8. | Challenges with Heat Pump Systems |
4.9. | Further Innovations |
4.10. | Vehicle Efficiency Through Cabin Thermal Management |
4.11. | Advantages of Sophisticated Thermal Management |
4.12. | Thermal Management Advanced Control: Key Players and Technologies |
5. | THERMAL ARCHITECTURE AND THERMAL SYSTEM SUPPLIERS |
5.1. | Thermal System Architecture |
5.2. | Thermal System Architecture Examples (1) |
5.3. | Thermal System Architecture Examples (2) |
5.4. | BYD ePlatform 3.0 |
5.5. | Thermal System Tier 1 Suppliers |
5.6. | Tier 1 Supplier Revenue 2023 |
5.7. | High Voltage Coolant Heaters (HVCH) |
5.8. | High Voltage Coolant Heater (HVCH) Supplier Announcements |
5.9. | Electric Compressor and Coolant Pump Supplier Announcements |
5.10. | Integrated Thermal Management Module (iTMM) Supplier Announcements |
5.11. | OEM's Developing Integrated Thermal Management In-house |
5.12. | Thermal Management Integration of Pumps and Valves |
5.13. | Supplying the Whole Thermal System for Commercial Vehicles |
6. | COOLANT FLUIDS, REFRIGERANTS, AND DIFFERENCES FOR EVS |
6.1. | Coolant Fluids in EVs |
6.2. | What is Different About Fluids Used for EVs? |
6.3. | Electrical Properties |
6.4. | Corrosion with Fluids |
6.5. | Reducing Viscosity |
6.6. | Alternative Fluids |
6.7. | Models with EV Specific Fluids |
6.8. | Lubrizol - Oils for EVs |
6.9. | Arteco - Water-glycol Coolants for EVs |
6.10. | Dober - Water-glycol Coolants for EVs |
6.11. | Cooling the Battery and the eAxle with the Same Fluid |
6.12. | Coolants: Comparison |
6.13. | Large Fluid Supplier Announcements |
6.14. | Refrigerant for EVs |
6.15. | Future Refrigerants - China, North America and Japan |
6.16. | Regulations May Impact Future Refrigerant Trends for EVs |
6.17. | PFAS Ban - Future Trend in Europe |
6.18. | PFAS-free Refrigerants: R744 and R290 |
6.19. | R744 Performance vs R1234yf in Heat Pumps |
6.20. | R744 and R290 as Alternatives |
6.21. | Hyundai and SK Partner for PFAS Free Next Gen Refrigerants |
6.22. | Refrigerant Content in EV Models |
6.23. | Impact of Heat Pumps on Refrigerant Content |
6.24. | EV Refrigerant Forecast 2015-2035 (kg) |
6.25. | WEG Volume in EV Models |
6.26. | WEG Forecast for EVs 2015-2035 |
6.27. | Oil Quantity in Oil Cooled Motors Comparison |
6.28. | Oil for Electric Motors Forecast 2015-2035 (L) |
6.29. | Fluids per Vehicle Market Average 2023 and 2035 |
6.30. | Summary and Outlook |
7. | THERMAL MANAGEMENT OF LI-ION BATTERIES IN ELECTRIC VEHICLES |
7.1. | Current Technologies and OEM Strategies |
7.1.1. | Introduction to EV Battery Thermal Management |
7.1.2. | Active vs Passive Cooling |
7.1.3. | Passive Battery Cooling Methods |
7.1.4. | Active Battery Cooling Methods |
7.1.5. | Air Cooling |
7.1.6. | Liquid Cooling |
7.1.7. | Liquid Cooling: Design Options |
7.1.8. | Refrigerant Cooling |
7.1.9. | Hyundai Considering Refrigerant Cooling |
7.1.10. | Cooling Strategy Thermal Properties |
7.1.11. | Analysis of Battery Cooling Methods |
7.1.12. | Battery Thermal Management Strategy by OEM |
7.1.13. | OEMs are Converging on Liquid Cooling |
7.1.14. | Liquid Cooling Enables Fast Charging |
7.1.15. | Higher Battery Capacities and Liquid Cooling 2015-2023 |
7.1.16. | Why Liquid Cooling Dominates |
7.1.17. | Cooling Strategy Market Share by Region 2015-2023 |
7.1.18. | Cooling Strategy Market Share by Cell Type 2015-2023 |
7.1.19. | Cooling Strategy Market Share Forecast 2015-2035 |
7.1.20. | Battery Thermal Management Strategy Forecast 2015-2035 (GWh) |
7.1.21. | IDTechEx Outlook |
7.1.22. | System Changes Moving to 800V |
7.1.23. | Thermal Management in 800V Systems |
7.1.24. | Thermal Management in 800V Systems |
7.1.25. | Thermal Management in Cell-to-pack Designs |
7.1.26. | WEG Content Reduction in Tesla Cell-to-pack |
7.2. | Immersion Cooling for Li-ion Batteries in EVs |
7.2.1. | Introduction |
7.2.2. | Fluids and Benchmarking |
7.2.3. | Players and Partnerships |
7.2.4. | Outlook and Forecasts |
7.3. | Phase Change Materials (PCMs) |
7.3.1. | Phase Change Materials (PCMs) |
7.3.2. | Phase Change Materials as Thermal Energy Storage |
7.3.3. | PCM Categories and Pros and Cons |
7.3.4. | PCM vs Battery Case Study |
7.3.5. | Fast Charging Using Phase Change Thermal Management - AllCell (Beam Global) |
7.3.6. | Calogy Solutions - heat pipe integration with PCMs |
7.3.7. | Phase Change Materials - players |
7.3.8. | PCM Categories and Pros and Cons |
7.3.9. | PCMs - Players in EVs |
7.3.10. | AllCell (Beam Global) |
7.3.11. | Operating Temperature Range of Commercial PCMs |
7.3.12. | Thermal Conductivity and Density Comparison of EV Battery PCMs |
7.3.13. | PCMs - Use-case and Outlook |
7.4. | Heat Spreaders and Cooling Plates |
7.4.1. | Inter-cell Heat Spreaders or Cooling Plates |
7.4.2. | Chevrolet Volt and Dana |
7.4.3. | Tesla and CATL Side Wall Cooling |
7.4.4. | Stanley - Inter-cell Heat Spreaders and Protection |
7.4.5. | Miba - Flexible Cooler |
7.4.6. | GMC Hummer EV Example |
7.4.7. | Advanced Cold Plate Design |
7.4.8. | Roll Bond aluminium Cold Plates |
7.4.9. | Examples of Cold Plate Design |
7.4.10. | Erbslöh Aluminum |
7.4.11. | DuPont - Hybrid Composite/metal Cooling Plate |
7.4.12. | L&L Products - Structural Adhesive to Enable a New Cold Plate Design |
7.4.13. | Senior Flexonics - Battery Cold Plate Materials Choice |
7.4.14. | Polymer Heat Exchangers? |
7.4.15. | Graphite Heat Spreaders |
7.4.16. | NeoGraf - Graphitic Thermal Materials |
7.4.17. | Integrating the Cold Plate into the Enclosure |
7.4.18. | Cold Plate Suppliers (1) |
7.4.19. | Cold Plate Suppliers (2) |
7.4.20. | Cold Plate Suppliers (3) |
7.5. | Coolant Hoses |
7.5.1. | Coolant Hoses for EVs |
7.5.2. | Coolant Hose Material |
7.5.3. | Alternate Hose Materials (1) |
7.5.4. | Alternate Hose Materials (2) |
7.5.5. | Alternate Hose Materials (3) |
7.6. | Other Notable Developments |
7.6.1. | Printed Temperature Sensors Continue to Attract Interest for Thermal Management Applications |
7.6.2. | Monitoring Swelling in EV Batteries Using Hybrid Printed Temperature and Force Sensors |
7.6.3. | Market Drivers and Examples of Temperature Monitoring Using Printed Sensors |
7.6.4. | Thermal Management Leading Focus for Automotive Printed Sensors |
7.6.5. | Tab Cooling Rather Than Surface Cooling |
7.6.6. | Thermoelectric Cooling |
7.6.7. | Skin Cooling: Aptera Solar EV |
7.6.8. | MOF-based Composite Materials |
7.7. | Thermal Management of EV Batteries: Use-cases |
7.7.1. | Audi e-tron |
7.7.2. | Audi e-tron GT |
7.7.3. | BMW i3 |
7.7.4. | BMW i4 and iX |
7.7.5. | BMW 330e PHEV |
7.7.6. | BYD Blade |
7.7.7. | CATL CTP 3.0 |
7.7.8. | Chevrolet Bolt |
7.7.9. | Faraday Future FF 91 |
7.7.10. | Ford Mustang Mach-E/Transit/F150 battery |
7.7.11. | Hyundai Kona |
7.7.12. | Hyundai E-GMP |
7.7.13. | Jaguar I-PACE |
7.7.14. | Mercedes EQS |
7.7.15. | MG ZS EV |
7.7.16. | MG Cell-to-pack |
7.7.17. | Polestar |
7.7.18. | Rimac Technology |
7.7.19. | Rivian |
7.7.20. | Romeo Power |
7.7.21. | Tesla Model S P85D |
7.7.22. | Tesla Model 3/Y |
7.7.23. | Tesla Model 3/Y prismatic LFP pack |
7.7.24. | Tesla Model S Plaid |
7.7.25. | Tesla 4680 Pack |
7.7.26. | Toyota Prius PHEV |
7.7.27. | Toyota RAV4 PHEV |
7.7.28. | Voltabox |
7.7.29. | VW MEB Platform |
7.7.30. | Xerotech |
7.8. | Thermal Interface Materials for EV Battery Packs |
7.8.1. | Introduction to Thermal Interface Materials for EVs |
7.8.2. | TIM Pack and Module Overview |
7.8.3. | TIM Application - Pack and Modules |
7.8.4. | TIM Application by Cell Format |
7.8.5. | Key Properties for TIMs in EVs |
7.8.6. | Gap Pads in EV Batteries |
7.8.7. | Switching to Gap fillers from Pads |
7.8.8. | Dispensing TIMs Introduction and Challenges |
7.8.9. | Challenges for Dispensing TIM |
7.8.10. | Thermally Conductive Adhesives in EV Batteries |
7.8.11. | Material Options and Market Comparison |
7.8.12. | TIM Chemistry Comparison |
7.8.13. | The Silicone Dilemma for the Automotive Market |
7.8.14. | Thermal Interface Material Fillers for EV Batteries |
7.8.15. | TIM Filler Comparison and Adoption |
7.8.16. | Thermal Conductivity Comparison of Suppliers |
7.8.17. | Factors Impacting TIM Pricing |
7.8.18. | TIM Pricing by Supplier |
7.8.19. | TIM in Cell-to-pack Designs |
7.8.20. | TIM Players |
7.8.21. | TIM EV Use Cases |
7.8.22. | TIM Forecasts |
7.9. | Fire Protection Materials |
7.9.1. | Thermal Runaway and Fires in EVs |
7.9.2. | Battery Fires and Related Recalls (automotive) |
7.9.3. | Automotive Fire Incidents: OEMs and Situations |
7.9.4. | EV Fires Compared to ICEs (1) |
7.9.5. | EV Fires Compared to ICEs (2) |
7.9.6. | Regulations |
7.9.7. | What are Fire Protection Materials? |
7.9.8. | Fire Protection Materials: Main Categories |
7.9.9. | Material Comparison |
7.9.10. | Density vs Thermal Conductivity for Fire Protection Materials |
7.9.11. | Material Market Shares 2023 |
7.9.12. | Fire Protection Materials Forecast (kg) |
7.9.13. | Fire Protection Materials |
8. | THERMAL MANAGEMENT IN EV CHARGING STATIONS |
8.1. | Overview of Charging Levels |
8.2. | Six Key Market Trends in EV Charging |
8.3. | Thermal Considerations for Fast Charging |
8.4. | Megawatt Charging: a New Segment of High-power DC Fast Charging |
8.5. | Thermal Management Strategies in HPC |
8.6. | Cable Cooling to Achieve High Power Charging |
8.7. | Leoni Liquid Cooled Charging Cables |
8.8. | Phoenix Contact - Liquid Cooling for Fast Charging |
8.9. | Brugg eConnect Cooling Units |
8.10. | TE Connectivity - Thermal Management Opportunities (I) |
8.11. | TE Connectivity - Thermal Management Opportunities (II) |
8.12. | CPC - Liquid Cooling for EV Charging (I) |
8.13. | CPC - Liquid Cooling for EV Charging (II) |
8.14. | Tesla Liquid-cooled Connector for Ultra fast Charging |
8.15. | Tesla Adopts Liquid-cooled Cable for its Supercharger |
8.16. | ITT Cannon's Liquid-cooled HPC Solution |
8.17. | Immersion Cooled Charging Stations |
8.18. | Two-phase Cooled Charging Cables: Ford |
8.19. | Commercial Charger Benchmark: Cooling Technology |
8.20. | Tesla MW Charging |
8.21. | Charging Infrastructure for Electric Vehicles |
9. | THERMAL MANAGEMENT OF ELECTRIC MOTORS |
9.1. | Introduction |
9.1.1. | Summary of Traction Motor Types |
9.1.2. | Electric Motor Type Market Share |
9.1.3. | Cooling Electric Motors |
9.2. | Motor Cooling Strategies |
9.2.1. | Air Cooling |
9.2.2. | Water-glycol Cooling |
9.2.3. | Oil Cooling |
9.2.4. | Electric Motor Thermal Management Overview |
9.2.5. | Motor Cooling Strategy by Power |
9.2.6. | Cooling Strategy by Motor Type |
9.2.7. | Cooling Technology: OEM strategies |
9.2.8. | Motor Cooling Strategy by Region (2015-2023) |
9.2.9. | Motor Cooling Strategy Market Share (2015-2023) |
9.2.10. | Motor Cooling Strategy Forecast 2015-2035 (units) |
9.2.11. | Alternate Cooling Structures |
9.2.12. | Refrigerant Cooling |
9.2.13. | Immersion Cooling |
9.2.14. | Phase Change Materials |
9.2.15. | Reducing Heavy Rare Earths Through Thermal Management |
9.3. | Motor Insulation and Encapsulation |
9.3.1. | Impregnation and Encapsulation |
9.3.2. | Potting and Encapsulation: Players |
9.3.3. | Axalta - Motor Insulation |
9.3.4. | Eaton - nanocomposite PEEK insulation |
9.3.5. | Elantas - Insulation Systems for 800V Motors |
9.3.6. | Huntsman - Epoxy Encapsulation and Impregnation |
9.3.7. | Solvay - PEEK insulation |
9.3.8. | Sumitomo Bakelite - Composite Stator Encapsulation |
9.3.9. | Insulating Hairpin Windings |
9.4. | Emerging Motor Technologies |
9.4.1. | Axial Flux Motors |
9.4.2. | Axial Flux Motors Enter the EV Market |
9.4.3. | Thermal Management for Axial Flux Motors |
9.4.4. | In-wheel motors |
9.4.5. | Electric Motor Research |
9.5. | Thermal Management of EV motors: OEM Use-cases |
9.5.1. | Audi e-tron |
9.5.2. | Audi Q4 e-tron |
9.5.3. | BMW i3 |
9.5.4. | BMW 5th Gen Drive |
9.5.5. | BorgWarner's EESM Development |
9.5.6. | Bosch - commercial vehicle motors |
9.5.7. | BYD e-Platform 3.0 |
9.5.8. | Chevrolet Bolt (LG) |
9.5.9. | Equipmake: Spoke Geometry |
9.5.10. | Ford Mustang Mach-E |
9.5.11. | GKN Automotive |
9.5.12. | GM Ultium Drive |
9.5.13. | Jaguar I-PACE |
9.5.14. | Huawei - Intelligent Oil Cooling |
9.5.15. | Hyundai E-GMP |
9.5.16. | Koenigsegg - Raxial Flux |
9.5.17. | LiveWire (Harley Davidson) |
9.5.18. | Lucid Air |
9.5.19. | MAHLE - Magnet Free Oil Cooled Motor |
9.5.20. | Magna's Latest eDrive |
9.5.21. | Mercedes EQ |
9.5.22. | Nidec - Gen.2 drive |
9.5.23. | Nissan Leaf |
9.5.24. | Rivian |
9.5.25. | Rivian Enduro Drive Unit |
9.5.26. | SAIC - Oil Cooling System |
9.5.27. | Schaeffler - Truck Motors |
9.5.28. | Tesla Cybertruck |
9.5.29. | Tesla Model S (pre-2021) |
9.5.30. | Tesla Model 3 |
9.5.31. | Toyota Prius |
9.5.32. | VW ID3/ID4 |
9.5.33. | Yamaha - hypercar electric motor |
9.5.34. | ZF - Commercial Vehicle Motors |
9.5.35. | ZF - Motor Innovations |
10. | THERMAL MANAGEMENT IN ELECTRIC VEHICLE POWER ELECTRONICS |
10.1. | Power Electronics and Thermal Management Overview |
10.1.1. | What is Power Electronics? |
10.1.2. | Power Electronics Use in Electric Vehicles |
10.1.3. | Power Electronics Material Evolution |
10.1.4. | Transistor History & MOSFET Overview - How Does it Affect Thermal Management? |
10.1.5. | Wide Bandgap (WBG) Semiconductor Advantages & Disadvantages |
10.1.6. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride Semiconductors |
10.1.7. | The Transition to SiC (market share 2015-2023) |
10.1.8. | SiC Drives 800V Platforms |
10.1.9. | Traditional EV Inverter Power Modules |
10.1.10. | Inverter Package Designs |
10.1.11. | Traditional Power Module Packaging |
10.1.12. | Baseplate, Heat sink, and Encapsulation Materials |
10.1.13. | Cooling Concept Assessment |
10.2. | Single- vs Double-Sided Cooling |
10.2.1. | Single Side, Dual Side, Indirect, and Direct Cooling |
10.2.2. | Benefits and Drawbacks of Single-Sided Cooling |
10.2.3. | TIM2 Area Largely Similar for Single-Sided Cooling |
10.2.4. | Key Summary of Double-Sided Cooling (DSC) |
10.2.5. | The Need for Double-Sided Cooling in Power Modules |
10.2.6. | Infineon's HybridPACK DSC |
10.2.7. | Inner Structure of HybridPACK DSC |
10.2.8. | Trend Towards Double-Sided Cooling for Automotive Applications |
10.2.9. | Market Share of Single and Double-Sided Cooling: 2024-2034 |
10.3. | TIM1 and TIM2 |
10.3.1. | General Trend of TIMs in Power Electronics (1) |
10.3.2. | General Trend of TIMs in Power Electronics (2) |
10.3.3. | Introduction to TIM1 |
10.3.4. | Solder TIM1 and Liquid Metal |
10.3.5. | Trend Towards Sintering |
10.3.6. | Why Sliver Sintering |
10.3.7. | Gamechanger? Threats to Ag - Cu sintering pastes |
10.3.8. | Copper Sintering - Challenges |
10.3.9. | Market News and Trends of Sintering |
10.3.10. | Thermal Interface Material 2 - Summary |
10.3.11. | TIM2 - IDTechEx's Analysis on Promising TIM2 |
10.3.12. | Where are TIM2 Used in EV IGBTs? |
10.3.13. | IGBTs and SiC are not the Only TIM Area in Inverters |
10.4. | Wire Bonding |
10.4.1. | Wire Bonds |
10.4.2. | Al Wire Bonds: A Common Failure Point |
10.4.3. | Advanced Wire Bonding Techniques |
10.4.4. | Tesla's Novel Bonding Technique |
10.4.5. | Die Top System - Heraeus |
10.5. | Substrate Materials |
10.5.1. | The Choice of Ceramic Substrate Technology |
10.5.2. | The Choice of Ceramic Substrate Technology |
10.5.3. | Materials of Substrate - Comparison |
10.5.4. | Comparison of Al2O3, ZTA, and Si3N4 Substrate |
10.5.5. | Approaches to Metallization: DPC, DBC, AMB and Thick Film Metallization |
10.5.6. | Si3N4 Substrate: Overall Best Performance with Low Cost-Effectiveness |
10.5.7. | Si3N4 Ag Free AMB Market Position |
10.6. | Cooling Power Electronics: Water or Oil |
10.6.1. | Inverter Package Cooling |
10.6.2. | Direct and Indirect Cooling (1) |
10.6.3. | Direct and Indirect Cooling (2) |
10.6.4. | Drive Unit Cooling with a Single Fluid |
10.6.5. | Drivers for Direct Oil Cooling of Inverters |
10.6.6. | Advantages, Disadvantages and Drivers for Oil Cooled Inverters |
10.6.7. | Direct Oil Cooling Projects |
10.6.8. | Inverter Liquid Cooling Strategy Forecast (units): 2015-2035 |
10.6.9. | Further EV Power Electronics Research |
10.7. | Liquid Cooled Inverter Examples |
10.7.1. | BorgWarner Heat Sinks |
10.7.2. | Ford Mustang Mach-E |
10.7.3. | Fraunhofer and Marelli - Directly Cooled Inverter |
10.7.4. | Hitachi - Oil Cooled Inverter |
10.7.5. | Jaguar I-PACE 2019 |
10.7.6. | Lucid - Water Cooled Onboard Charger |
10.7.7. | Nissan Leaf |
10.7.8. | Renault Zoe 2013 (Continental) |
10.7.9. | Rivian |
10.7.10. | Senior Flexonics - IGBT Heat Sink Design |
10.7.11. | Tesla Model 3 |
10.7.12. | VW ID |
11. | SUMMARY OF FORECASTS |
11.1. | Forecast Methodology |
11.2. | BEV Cars with Heat Pumps Forecast (units) |
11.3. | EV Refrigerant Forecast 2015-2035 (kg) |
11.4. | WEG Forecast for EVs 2015-2035 |
11.5. | Oil for Electric Motors Forecast 2015-2035 (L) |
11.6. | Battery Thermal Management Strategy Forecast 2015-2035 (GWh) |
11.7. | Immersion Fluid Volume Forecast in Passenger Cars 2021-2035 (L) |
11.8. | Immersion Fluid Volume Forecast in CAM 2023-2035 (L) |
11.9. | Combined Fluid Forecasts for BEV & PHEV Cars 2015-2035 (volume) |
11.10. | TIM Mass Forecast for EV Batteries by TIM Type: 2021-2034 (kg) |
11.11. | TIM Market Size Forecast for EV Batteries by TIM Type: 2021-2034 (US$) |
11.12. | TIM Forecast for EV Batteries by Vehicle Type: 2021-2034 (kg and US$) |
11.13. | Fire Protection Materials Forecast (kg) |
11.14. | Motor Cooling Strategy Forecast 2015-2035 (units) |
11.15. | Inverter Liquid Cooling Strategy Forecast (units): 2015-2035 |
12. | COMPANY PROFILES |
12.1. | AllCell Technologies (Beam Global): Phase Change Material for EVs |
12.2. | Amphenol Advanced Sensors |
12.3. | Bostik |
12.4. | Cadenza Innovation |
12.5. | Carrar: Two-Phase Immersion Cooling for EVs |
12.6. | Calyos |
12.7. | CSM |
12.8. | Dana |
12.9. | DuPont |
12.10. | e-Mersiv |
12.11. | Engineered Fluids |
12.12. | FUCHS: Dielectric Immersion Fluids for EVs |
12.13. | KULR Technology |
12.14. | MAHLE |
12.15. | M&I Materials |
12.16. | NeoGraf |
12.17. | Solvay Specialty Polymers |
12.18. | Ultimate Transmissions |
12.19. | Voltabox |
12.20. | WACKER |
12.21. | WEVO Chemie: Battery Thermal Management Materials |
12.22. | Xerotech |
12.23. | XING Mobility |