This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

Batteries for Stationary Energy Storage 2019-2029

A global view of behind-the-meter & front-of-meter stationary energy storage deployments and market drivers

Show All Description Contents, Table & Figures List Pricing Related Content
2018 was a remarkable year for stationary energy storage. Governments and policymakers around the world are beginning to wake up to the value batteries can offer to the grid, both in terms of flexibility and decarbonisation. Over 6GWh was deployed, and market leaders such as Tesla expect to double their deployments for 2019.
Example chart of stationary energy storage deployment by country in front and behind-the-meter for 2018. Shares differ from data provided in report.
Source: IDTechEx 'Batteries for Stationary Energy Storage 2019 - 2029'
The progress is thanks in no small part to falling Li-ion battery costs, driven by the economies of scale of the electric car industry: plug-in passenger electrics topped five million on roads globally at the beginning of 2019. Indeed, as costs have fallen, projects with longer duration battery systems have become feasible: many new grid-level projects are now four hours. This has created opportunities for storage developers: in some scenarios it has even enabled the displacement of gas peaker plants, for grids aiming to fully decarbonise. As detailed in the new IDTechEx report, 'Batteries for Stationary Energy Storage 2019 - 2029', enormous new projects are underway, and some dwarf the record-breaking '100MW (120MWh) in 100 days' challenge from Elon Musk to the South Australian government in 2017.
The U.S. has led the industry for a number of years; a sizable mandate from California coupled with big-budget financial incentives have underpinned the country's deployments, as well as the batteries procured for frequency response in PJM's territory from 2012 - 2017 (now saturated). In 2018, landmark rulings like FERC Order 841, ambitious decarbonisation and renewables targets in multiple states, and growing momentum behind state-wide energy storage mandates will pave the way for the future of energy storage in the country.
States in the U.S. with energy storage mandates and targets.
Source: IDTechEx 'Batteries for Stationary Energy Storage 2019 - 2029'
The global picture is also changing: both China & South Korea topped 1GWh in yearly deployments in 2018, with India also commissioning some of its first large-scale projects. With such rapid progress, teething problems have emerged: to meet the sudden demand in South Korea, ESS makers compromised on quality, leading to a government shutdown of hundreds of public battery systems that spontaneously caught fire. The issue was reported by Korean news outlets to be faulty battery management systems.
Despite hiccups, the ambitious levels of renewables integration in many of these countries will nevertheless require massive amounts of energy storage to manage moving forward. The new IDTechEx report details the leading countries now and in the future.
Based on a global assessment IDTechEx Research has developed forecasts by segment and region for 2019 - 2029.
The key takeaways / benefits of the research in this report are:
  • Current year and historical deployments of stationary energy storage by region.
  • Market forecasts up to 2029 by region and segment (behind-the-meter, front-of-meter) in GWh and $ billion.
  • Regional analysis: Germany, Australia, Italy, Japan, UK, China, US, South Korea, India.
  • Key drivers in front and behind-the-meter, how this will change in the future.
  • A look at alternative energy storage technologies with relative strengths and weaknesses, including Redox Flow Batteries, Fuel Cells and more.
  • Case studies of select markets.
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.What's the big deal with batteries?
1.2.Historical context
1.3.Stationary energy storage is not new
1.4.Classification of energy storage systems
1.5.The rapid adoption of electric vehicles
1.6.Front-of-meter (FTM) and behind-the-meter (BTM)
1.7.Stationary storage markets
1.8.Key Home-Battery Markets
1.9.Overview of ES drivers
1.10.Market forecast by country (GWh)
1.11.Market forecast by country (GWh) - Table
1.12.Market forecast, FTM and BTM split (GWh)
1.13.Market forecast ($ billion)
1.14.Stationary ESS Forecast by Technology 2019- 2029 (Li-ion, RFB, Lead-acid, GWh)
1.15.Home-battery Market Forecast by Region 2013-2029 (GWh)
1.16.Forecast assumptions and explanation
1.17.Deployment by country, 2018
1.18.Global overview
1.19.U.S. mandates and targets overview
1.20.Global overview
1.21.Market barriers & challenges
1.22.Important considerations for battery selection
1.23.The battery trilema
2.2.Electrochemistry definitions
2.3.Useful charts for performance comparison
2.4.Stationary Energy Storage Markets
2.5.MW or MWh?
2.6.Incentives for energy storage
2.7.Turning a battery into an ESS
2.8.Levelised cost of storage (LCOS)
2.9.Costs that influence LCOS
3.1.Overview of LiB technologies: from cell chemistry to battery packs
3.1.1.What is a Li-ion battery?
3.1.2.The elements used in Li-ion batteries
3.1.3.Standard materials in LiBs
3.1.4.A family tree of Li based batteries
3.1.5.There is more than one type of LiB
3.1.6.Standard cathode materials - LCO and LFP
3.1.7.Cathode alternatives - NCA
3.1.9.Cathode overview
3.1.10.Anode materials - Battery-grade graphite
3.1.11.LTO anode - Toshiba
3.1.12.Inactive materials negatively affect energy density
3.1.13.Commercial cell geometries
3.1.14.Differences between cell, module, and pack
3.2.Alternatives to Li-ion
3.2.1.More than Li-ion
3.2.2.The increasingly important role of stationary storage
3.2.3.Stalling battery technologies
3.2.4.Lead-acid batteries
3.2.5.Sodium sulphur battery
3.2.6.Nickel cadmium and nickel metal hydride battery
3.2.7.Redox flow batteries for stationary storage?
3.2.8.Redox flow batteries working principle
3.2.9.Exploded view of VRFB
3.2.10.Hybrid RFBs: Zinc/Bromine
3.2.11.Hybrid RFBs: Hydrogen/Bromine
3.2.12.Most popular: Vanadium redox flow battery
3.2.13.Technology and manufacturing readiness of RFBs
3.2.14.Fuel Cells: working principle
3.2.15.Fuel cells
3.2.16.Fuel cells in California SGIP program
3.2.17.Comparison of ES technology use cases
3.3.Stationary storage system costs
3.3.1.Why costs are important
3.3.2.Performance goes up, cost goes down
3.3.3.Cost discussions: cell, pack, system
3.3.4.Innovation important for cost reduction
3.3.5.Li-ion ESS Price Survey (December 2019)
3.3.6.Li-ion System Cost Breakdown
3.3.7.ESS cost assumptions
3.3.8.Case study: German residential ESS cost decline
3.3.9.Case study: California residential ESS cost decline
4.1.Introduction to ES drivers
4.2.Overview of ES drivers
4.3.Renewable energy self-consumption
4.4.Principle of self-consumption
4.5.ToU Arbitrage
4.6.Feed-in-Tariff phase-outs
4.7.Net metering phase-outs
4.8.Power purchase agreements
4.9.Summary of solar compensations
4.10.Demand Charge Reduction
4.11.Gas Peaker Plant Deferral
4.12.Virtual Power Plants
4.13.Virtual Power Plant companies
4.14.Off-grid and remote applications
4.15.Challenges in remote-region and island applications
4.16.Other drivers
5.1.Overview of ancillary services
5.2.Ancillary service requirements
5.3.Frequency Regulation
5.4.Levels of frequency regulation
5.5.Load following
5.6.Spinning and non-spinning reserve
6.1.Energy storage deployment FTM and BTM by country
6.2.1.Historic ES deployment in the U.S.
6.2.2.US: Key Developments
6.2.3.Hot states: mandates and targets overview
6.2.4.California energy storage mandate
6.2.5.Local mandates and targets
6.2.6.List of ES mandates and targets
6.2.7.PJM History
6.2.8.PJM states and FR deployment
6.2.10.Hawaii PPAs
6.2.11.Texas: RE history and the need for ES
6.2.12.Texas ES developments
6.2.13.Attractiveness of batteries by U.S. market 2019
6.2.14.LiBs dominate
6.2.16.Investment Tax Credit
6.2.17.California Self-generation Incentive Program
6.2.18.C&I deployment in California
6.2.19.Residential deployment in California
6.2.20.SGIP spend on BTM storage
6.2.21.Comparison of popular residential systems
6.2.22.Maryland enacts a tax credit
6.2.23.New Hampshire residential storage pilot
6.3.2.Capacity Markets: Explained
6.3.3.Energy storage participation in the UK capacity market
6.3.4.Batteries lose value after BEIS de-rating
6.3.5.Storage de-rating factors
6.3.6.Capacity markets funding paused by ECJ
6.3.7.UK Enhanced Frequency Response
6.3.8.Revenue stacking
6.3.9.UK 'demand charge' uncertainty for BTM projects
6.3.10.UK residential market lagging
6.4.1.FTM in Germany
6.4.2.BTM energy storage in Germany
6.4.3.KfW Bank Subsidy
6.4.4.Solar-plus-storage reaches cost parity
6.4.5.FiT expirations
6.4.6.ESS price decline
6.4.7.Market Share of Home Battery Players in Germany
6.4.8.Sonnen growth
6.4.9.Siemens enters German residential storage market
6.5.1.Italy residential solar market is saturated
6.6.South Korea
6.6.1.Rapid growth in South Korea
6.6.2.Korea: Market Drivers
6.6.3.Korea: ESS developer market share
6.6.4.Battery fires in Korea
6.6.5.Causes of battery fires
6.7.1.Residential storage is booming in Australia
6.7.2.Australia storage policy and renewables targets
6.7.3.Australia grid-level projects
6.8.1.Record year for stationary storage in China
6.8.2.Grid-side energy storage growth in China
6.8.3.China's Gigafactories
6.8.4.China dominating?
6.8.5.Main players
6.9.1.A good year for stationary energy storage in India
7.1.Convergence between solar and storage
7.2.Downstream Energy Storage component vendors
7.3.Global players in ESS
7.4.Companies from other sectors jumping in
7.5.Value Chain
7.6.Most companies in assembly business
7.7.Tesla's ESS business
7.8.Powerwall and Powerpack
7.9.Residential storage cost breakdown
7.10.Major powerpack projects
7.11.Tesla's ESS business
7.13.Green Charge Networks
7.15.BYD's layout is similar to Tesla
7.16.Green Mountain Power
7.17.Green Mountain Power's Innovation Strategy
7.18.Ampard and Fenecon
8.2.Schneider Electric
8.4.Powin Energy

Report Statistics

Slides 211
Forecasts to 2029

Subscription Enquiry