This report has been updated. Click here to view latest edition.

If you have previously purchased the archived report below then please use the download links on the right to download the files.

Thermal Management for 5G

Thermal interface materials, die attach materials, metal sintering, MIMO, active antenna array, semiconductor technologies, sub-6 GHz and mmWave 5G. OEM strategy, player analysis and granular market forecasts


Show All Description Contents, Table & Figures List Pricing Related Content
The 5G market is expanding rapidly, with the first installations already being demonstrated. The increasing deployment of 5G will generate innovation and growth opportunities in thermal management. The shift to higher frequencies, and the accompanied higher signal loss, necessitates the densification of network installations, hence, utilising many more small-sized (pico or femto) stations. This acts to multiply the potential market for 5G infrastructure.
 
Additionally, the growth of sub-6 GHz installations opens the door for new power amplifier semiconductor technologies such as GaN. This is accompanied with a transition away from incumbent die attach materials like AuSn towards emerging alternatives, for example, pressure-less silver sintering.
 
 
As new semiconductor technologies are implemented, the choice of die attach evolves too. In this report the use of AuSi, AuSn, Ag pressure sintering, Ag pressure-less sintering, Cu pressure sintering and Cu pressure-less sintering are considered.
The rise of massive MIMO increases the number of RF chains per installation, beamforming capabilities and the number of antenna elements used in networks. This results in an increase in the materials required for the antenna PCB, power amplifiers, beamforming components and many more. Massive MIMO also drives data transfer rates and channels higher leading to a greater requirement on baseband processing units, power consumption and hence greater market opportunities for thermal interface materials.
 
 
With increasing 5G installations the thermal interface material (TIM) requirement increases drastically to match. TIM is required in the antenna RF front end but also for the baseband processing and the power supply, leading to a large potential market.
With the future rise of mmWave, even more drastic changes will be seen in the 5G market and opportunities for thermal management. To increase antenna gain, the number of antenna elements also increases, but due to the smaller wavelength, the antenna itself can be smaller. This leads to a densification of components with a drastic increase in the number of power amplifiers and beamforming components that need to be integrated. Considering teardowns of current early devices, this will likely be done by distributing components behind the antenna in a dense lattice-like structure, resulting in power dissipation challenges and hence a larger market for thermal management materials.
 
 
As the 5G deployment goes on, a greater shift is seen towards mmWave installations, presenting further new opportunities for thermal management materials.
 
As the component number and density increase in a hybrid beamforming arrangement, we see many more beamforming components but also the potential to reduce the use of discrete power amplifiers, integrating them into the beamforming component. This high level of integration could then also see the market shift back towards silicon-based components in the long term.
 
Many of the initial 5G mobile phones that were tested by the public (especially the mmWave compatible ones) would overheat whilst utilising 5G's high download speeds and would drop back to using 4G in order to cool down. This is a very temporary solution, consumers going forward will want these extreme download speeds to reliably perform for much longer timescales. There are several strategies used by manufacturers to help keep heat to a minimum in smartphones, with the incorporation of 5G we are seeing a greater increase in devices utilising technologies such as vapour chambers and even graphene heat spreaders. Much like in previous generations of phones, how thermal interface materials are used and in what quantity is an important factor and a very large market in itself.
 
In this report we have carried out an extensive analysis of the 5G infrastructure market, observing the trends and combining this with evaluations of current installations and their construction. We start with 5G deployment forecasts and segment through frequency, station size and MIMO size in order to cover each use case in-depth. For each of these considerations, we break down the number of antenna elements, power amplifiers and beamforming components required. From here the trends in semiconductor technology are assessed depending on the antenna power and gain required. How the die attach market is evolving and how this will change with semiconductor technology is considered to provide a die attach market forecast. The baseband processing and power supply requirements are also considered between different station sizes and frequencies. Finally, the total areas of the previously mentioned components are used to calculate the requirement for thermal interface materials in 5G networks. For each of the mentioned quantities, we retain the segmentation of previous forecasts, this allows for an extremely granular technological and market overview. Teardowns of previous and new 5G smartphones are used to give realistic estimates of thermal interface material usage and forecast through to 2030.
What this report provides:
 
Technology assessments:
  • 5G installation sizes (macro, micro, pico & femto)
  • 5G deployment frequencies (sub-6 GHz & mmWave)
  • MIMO and massive MIMO installations
  • How the number of antenna elements and board size increases
  • Analog vs hybrid vs digital beamforming architectures
  • Sub-6 GHz and mmWave installation teardowns and assessments
  • Integrated vs discrete power amplifier technologies
  • Beamforming and amplifier components in the 5G RF chain
  • Semiconductor technologies for 5G networks
  • Die attach materials for RF power amplifiers: AuSi, AuSn, pressured and pressure-less metal sintering
  • Power demands for 5G networks including the antenna and baseband processing units
  • Thermal interface materials and applications: tapes, adhesives, greases, gels, pads, phase change materials, graphite, solders, boron nitride, graphene, CNTs and more
  • Thermal interface materials for antenna, baseband processing and power supplies
  • Thermal management approaches in smartphones
  • Thermal interface materials for smartphones with teardown analysis
 
Market assessments:
  • Key 5G players and patent landscape
  • The RF GaN industry and its suppliers
  • Suppliers of active antenna units
  • Sintering materials, their suppliers and assembly companies
  • Thermal interface materials, applications, types and suppliers
 
Forecast lines (2020-2030):
  • 5G installations by sub-6 GHz or mmWave frequency
  • 5G installations by station size (macro, micro, pico & femto)
  • 5G installations by MIMO size (2X2, 4X4, etc.)
  • The number of antenna elements by MIMO size
  • Area and mass of PCB materials required for antenna by MIMO size
  • The number of power amplifier and beamforming components by MIMO size
  • GaN die area for amplifier components
  • Amplifier semiconductor area by semiconductor choice
  • Die attach area and mass by station size
  • Die attach mass for GaN and LDMOS amplifiers by attach technology
  • Total market value for sintering materials in 5G by sintering technology
  • Thermal interface material area by station size and station frequency
  • Thermal interface material area for baseband processing units by station size
  • Power consumption for 5G by station size and by baseband processing vs antenna
  • Thermal interface material area for power supplies by station size
  • Total thermal interface material area for 5G stations by size and by baseband processing vs antenna vs power supply
  • Thermal interface materials for smartphones
Analyst access from IDTechEx
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
Further information
If you have any questions about this report, please do not hesitate to contact our report team at research@IDTechEx.com or call one of our sales managers:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.5G, next generation cellular communications network
1.2.Evolution of the cellular base station: overview
1.3.5G station installation forecast (2020-2030) by frequency
1.4.5G station instalment number forecast (2020-2030) by type of cell (macro, micro, pico/femto)
1.5.MIMO size forecast (2020-2030)
1.6.Antenna elements forecast
1.7.Antenna PCB material forecast
1.8.GaN to win in sub-6 GHz 5G
1.9.Semiconductor choice forecast
1.10.Semiconductor forecast (2020-2030) for power amplifiers (GaN, LDMOS, SiGe/Si) by die area
1.11.Why metal sintering?
1.12.Die attach forecasts
1.13.Power forecast for 5G
1.14.Total TIM forecast for 5G stations
1.15.Smartphone thermal interface material (TIM) estimate summary
1.16.Heat spreader material forecast in smartphones by area (excl. display)
2.INTRODUCTION
2.1.5G, next generation cellular communications network
2.2.Evolution of mobile communications
2.3.What can 5G offer? High speed, massive connection and low latency
2.4.Differences between 4G and 5G
2.5.5G is suitable for vertical applications
2.6.5G for consumers overview
2.7.Two types of 5G: sub-6 GHz and high frequency
2.8.Sub-6 GHz will be the first option for most operators
2.9.Why does 5G have lower latency radio transmissions?
2.10.The main technique innovations
2.11.5G is live globally
2.12.5G Capex 2020-2025
2.13.5G user equipment landscape
2.14.5G smartphone overview
2.15.5G investments at three stages
2.16.Case study: expected 5G investment for infrastructure in China
2.17.Key players in 5G technologies
2.18.5G patents by countries
2.19.5G patents by companies
2.20.Global trends and new opportunities in 5G
2.21.Thermal Management for 5G
3.BASE STATION ARCHITECTURE
3.1.Shift to higher frequencies shrinks the antenna
3.2.5G station installation forecast (2020-2030) by frequency
3.3.5G base station types
3.4.Base station architecture: C-RAN
3.5.Evolution of the cellular base station: overview
3.6.5G trend: small cells (picocell and femtocell)
3.7.5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto)
3.8.LTE antenna tear down
4.ANTENNA DESIGN
4.1.1.Massive MIMO requires active antennas
4.1.2.MIMO size forecast (2020-2030)
4.1.3.Approach to beam forming (hybrid vs analogue vs digital)
4.1.4.Approach to beam forming
4.1.5.Radio Frequency Front End (RFFE) Module
4.1.6.Density of components in RFFE
4.1.7.RF module design architecture
4.1.8.Some examples from satellite and phased-array radar
4.1.9.The same RF IC is being adopted for 5G
4.1.10.IDT (Renesas) 28 GHz 2x2 4-channel SiGe beamforming IC
4.1.11.NXP: 4-channel Tx/Rx beamforming IC in SiGe with low EVM
4.1.12.Anokiwave: Tx/Rx 4-element 3GPP 5G band all in silicon
4.1.13.Anokiwave: 256-element all-silicon array
4.1.14.Sivers IMA: dual-quad 5G dual-polarized beam forming IC
4.1.15.Analog: a 16-channel dual polarized beam-forming IC?
4.1.16.SoC Microwave: single-channel GaAs HEMT devices
4.1.17.28 GHz all-silicon 64 dual polarized antenna
4.1.18.Planar vs non-planar design
4.1.19.Non-planar design
4.1.20.Planar design
4.1.21.Advanced packaging techniques
4.1.22.NEC's new antenna technology
4.2.5G Use Cases and Forecast
4.2.1.Sub-6 GHz antenna teardown
4.2.2.mmWave antenna teardown
4.2.3.Sub-6 GHz and mmWave in one unit
4.2.4.Main suppliers of 5G active antennas unit (AAU)
4.2.5.Case study: NEC 5G Radio Unit
4.2.6.Case study: Nokia AirScale mMIMO Adaptive Antenna
4.2.7.Case study: Samsung 5G Access solution for SK telecom
4.2.8.Antenna elements forecast
4.2.9.Antenna PCB material forecast
4.2.10.Power amplifier and beamforming component forecast
4.2.11.Thermal considerations for cell towers and base stations
4.2.12.Thermal considerations for small cells
4.2.13.Nokia's base station liquid cooling
4.2.14.ZTE's award winning base station design
4.2.15.Antenna array design is just one consideration
5.THE CHOICE OF SEMICONDUCTOR TECHNOLOGY FOR 5G
5.1.1.Motivation of 5G: increasing the bandwidth
5.1.2.The choice of the semiconductor technology
5.1.3.Key semiconductor properties
5.1.4.Key semiconductor technology benchmarking
5.1.5.The choice of the semiconductor technology
5.1.6.Power vs frequency map of power amplifier technologies
5.1.7.GaAs vs GaN for RF power amplifiers
5.1.8.GaAs vs GaN: power density and footprint
5.1.9.GaAs vs GaN: reliability and dislocation density
5.1.10.So what is the main drawback of GaN?
5.1.11.Why GaN and GaAs both have their place?
5.2.The GaN Market for RF in 5G
5.2.1.GaN-on-Si, SiC or Diamond for RF
5.2.2.GaN suppliers
5.2.3.Ampleon
5.2.4.Analog Devices
5.2.5.Cree-Wolfspeed
5.2.6.Wolfspeed GaN-on-SiC adoption
5.2.7.Infineon
5.2.8.MACOM
5.2.9.Mitsubishi Electric
5.2.10.Northrop Grumman
5.2.11.NXP Semiconductor
5.2.12.Qorvo
5.2.13.Qorvo sub-6 GHz products
5.2.14.Qorvo mmWave products
5.2.15.Qorvo and Gapwaves mmWave antenna
5.2.16.Qorvo 39 GHz antenna
5.2.17.RFHIC
5.2.18.Sumitomo Electric
5.2.19.Summary of RF GaN Suppliers
5.2.20.Summary of RF GaN market for 5G
5.3.GaN to dominate Sub-6 GHz?
5.3.1.LDMOS dominates but will struggle to reach even sub-6 GHz 5G
5.3.2.GaN to win in sub-6 GHz 5G
5.4.A Different Story for mmWave
5.4.1.The situation at mmWave 5G is drastically different
5.4.2.Solving the power challenge: high antenna gain increases distance
5.4.3.Shift to higher frequencies shrinks the antenna
5.4.4.Major technological change: from broadcast to directional communication
5.4.5.Examples of MMIC RFFEs for 5G: Qorvo GaN FEM
5.4.6.Examples of silicon based beam forming ICs for mmWave 5G
5.4.7.Examples of SiGe based beam forming ICs for mmWave 5G
5.5.Semiconductor Outlook for 5G
5.5.1.Semiconductor choice forecast
5.5.2.Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area
6.CURRENT AND FUTURE DIE ATTACHMENT: THE ROLE OF METAL SINTERING OR FILLED EPOXY
6.1.1.Air cavity vs plastic overmold packages
6.1.2.Packaging LDMOS power amplifiers
6.1.3.Packaging GaN power amplifiers
6.1.4.Packaging GaAs power amplifiers
6.1.5.Benchmarking CTE and thermal conductivity of various packaging materials
6.1.6.LTCC and HTCC packages
6.1.7.HTCC metal-ceramic package
6.1.8.LTCC RF transitions in packages
6.1.9.Built-in Cu slugs in GaN packages
6.1.10.Current die attach technology choice for RF GaN PAs
6.1.11.Emerging die attach technology choice for RF GaN PAs
6.1.12.Metal sintering vs soldering
6.1.13.Why metal sintering?
6.1.14.Properties of Ag sintered or epoxy die attach materials
6.2.Suppliers of Sintering Pastes
6.2.1.Suppliers for metal sintering pastes
6.2.2.Suppliers for metal sintering pastes: Alpha Assembly
6.2.3.Suppliers for metal sintering pastes: Henkel
6.2.4.Henkel: Ag sintering paste
6.2.5.Heraeus: sintered Ag die attach paste
6.2.6.Suppliers for metal sintering pastes: Heraeus
6.2.7.Kyocera: mixed nano/micro pressure-less sintering die attach paste
6.2.8.Suppliers for metal sintering pastes: Dowa
6.2.9.Namics: a variety of Ag die attach paste
6.2.10.Indium Corp: nano Ag pressureless sinter paste
6.2.11.Suppliers for metal sintering pastes: Amo Green
6.2.12.Toyo Chem: Sintered die attach paste
6.2.13.Bando Chemical: pressure-less nano Ag sintering paste
6.2.14.Suppliers for metal sintering pastes: Nihon Handa
6.2.15.Nihon Superior: nano silver for sintering
6.2.16.Heraeus and Nihon Handa cross license
6.2.17.Hitachi: Cu sintering paste
6.2.18.Cu sintering: characteristics
6.2.19.Reliability of Cu sintered joints
6.2.20.Mitsui Mining: Nano copper pressured and pressure-less sintering under N2 environment
6.2.21.Pricing information on Ag Sintering, solder and TLPB
6.2.22.Automating the die attach for 5G power amplifiers
6.2.23.Palomar Technologies automated sintering
6.2.24.ASM AMICRA Microtechnologies
6.2.25.BE Semiconductor
6.2.26.Legacy and incumbency for device assembly
6.3.Forecast of Die Attach Materials
6.3.1.Die attach material forecasts by station size
6.3.2.Die attach mass for GaN and LDMOS forecast
6.3.3.Sintering market value forecast
7.IN-PACKAGE HEAT DISSIPATION
7.1.Thermal conductivity of key materials in a package
7.2.2D and 3D package architectures
7.3.2D packages: impact of system architecture on heat dissipation
7.4.3D package: using Ag paste to dissipate heat from the top
7.5.Silver paste based heat dissipation 'chimneys' within packages
7.6.Silver paste based heat dissipation 'chimneys' within packages
7.7.Creating thermal pathways using conductive inks
8.THERMAL INTERFACE MATERIALS
8.1.TIM Form and Material Overview
8.1.1.TIM considerations
8.1.2.Thermal interface material by physical form
8.1.3.Assessment and considerations of liquid products
8.1.4.Ten types of thermal interface material
8.1.5.Properties of thermal interface materials
8.1.6.1. Pressure-sensitive adhesive tapes
8.1.7.2. Thermal liquid adhesives
8.1.8.3. Thermal greases
8.1.9.Problems with thermal greases
8.1.10.Thermal greases
8.1.11.Viscosity of thermal greases
8.1.12.Technical data on thermal greases
8.1.13.The effect of filler, matrix and loading on thermal conductivity
8.1.14.4. Thermal gels
8.1.15.5. Thermal pastes
8.1.16.Technical data on gels and pastes
8.1.17.6. Elastomeric pads
8.1.18.Advantages and disadvantages of elastomeric pads
8.1.19.7. Phase Change Materials (PCMs)
8.1.20.Phase change materials - overview
8.1.21.Operating temperature range of commercially available phase change materials
8.2.Advanced Materials as Thermal Interface Materials
8.2.1.Advanced materials for TIM - introduction
8.2.2.Achieving through-plane alignment
8.2.3.Summary of TIM utilising advanced carbon materials
8.3.Graphite
8.3.1.Graphite - overview
8.3.2.Graphite sheets: through-plane limitations
8.3.3.Graphite sheets: interfacing with heat source and disrupting alignment
8.3.4.Panasonic - Pyrolytic Graphite Sheet (PGS)
8.3.5.Progressions in vertical graphite
8.3.6.Vertical graphite with additives
8.3.7.Graphite pastes
8.4.Carbon Fiber
8.4.1.Carbon fiber as a thermal interface material - introduction
8.4.2.Carbon fiber as TIM in smartphones
8.4.3.Magnetic alignment of carbon fiber TIM
8.4.4.Other routes to CF alignment in a TIM
8.4.5.Carbon fiber with other conductive additives
8.5.Carbon Nanotubes (CNT)
8.5.1.Introduction to Carbon Nanotubes (CNT)
8.5.2.Challenges with VACNT as TIM
8.5.3.Transferring VACNT arrays
8.5.4.Notable CNT TIM examples from commercial players
8.6.Graphene
8.6.1.Graphene in thermal management: application roadmap
8.6.2.Graphene heat spreaders: commercial success
8.6.3.Graphene heat spreaders: performance
8.6.4.Graphene heat spreaders: suppliers multiply
8.6.5.Graphene as a thermal paste additive
8.6.6.Graphene as additives to thermal interface pads
8.7.Ceramic Advancements
8.7.1.Ceramic trends: spherical variants
8.7.2.Denka: functional fine particles for thermal management
8.7.3.Denka
8.7.4.Showa Denko: transition from flake to spherical type filler
8.8.Boron Nitride Nanostructures
8.8.1.Introduction to nano boron nitride
8.8.2.BNNT players and prices
8.8.3.BNNT property variation
8.8.4.BN nanostructures in thermal interface materials
8.9.TIM in 5G Antenna and BBU
8.9.1.Board-level heat dissipation: thermal interface materials
8.9.2.Indium foils as a good board-level TIM option
8.9.3.A simple description to the anatomy of a base station
8.9.4.Background info on baseband processing unit and remote radio head
8.9.5.Path evolution from baseband unit to antenna
8.9.6.TIM example: Samsung 5G access point
8.9.7.TIM example: Samsung outdoor CPE unit
8.9.8.TIM example: Samsung indoor CPE unit
8.9.9.TIM forecast for 5G antenna
8.9.10.The 6 components of a baseband processing unit
8.9.11.BBU parts I: TIM area in the main control board
8.9.12.BBU parts II & III: TIM area in the baseband processing board & the transmission extension board
8.9.13.BBU parts IV & V: TIM area in radio interface board & satellite-card board
8.9.14.BBU parts VI: TIM area in the power supply board
8.9.15.Summary
8.9.16.TIM for 5G BBU
8.10.5G Power
8.10.1.Power consumption in 5G
8.10.2.Challenges to the 5G power supply industry
8.10.3.The dawn of smart power?
8.10.4.Power consumption forecast for 5G
8.10.5.TIM forecast for power supplies
8.11.Total TIM Forecast for 5G
8.11.1.Total TIM forecast for 5G stations
9.THERMAL STRATEGIES FOR ACCESS POINTS
9.1.Access points
9.2.Components affected by temperature
9.3.Boyd's take on thermal design for an access point
9.4.Cradlepoint's wideband adapter
9.5.Huawei 5G CPE unit
9.6.ZTE 5G Wi-Fi router
9.7.Developments for access points
10.THERMAL MANAGEMENT FOR MOBILE DEVICES
10.1.1.5G phones overheating
10.1.2.5G smartphone chipsets: which OEMs have mmWave
10.1.3.mmWave costs more too
10.1.4.Qualcomm's 5G antenna
10.1.5.Apple's 5G delay and Intel withdraw from market
10.2.Thermal Management Approaches for 5G Mobile Devices
10.2.1.Thermal throttling
10.2.2.Materials selection
10.2.3.Heat dissipation
10.2.4.Heat sinks and heat spreaders
10.2.5.Heat pipes/ vapour chambers
10.2.6.Vapour chambers: OEMs
10.2.7.Emerging role of vapour chambers
10.2.8.OEM thermal management strategies
10.2.9.Samsung's cooling solution
10.2.10.Huawei
10.2.11.Nubia Red Magic 5G gaming phone
10.2.12.Lenovo demonstrate the first 5G laptop
10.2.13.Thermoelectric Cooling (TEC)
10.2.14.Smartphone cooling now and in the future
10.3.Thermal Materials for Mobile Devices
10.3.1.Introduction
10.3.2.Thermal management differences: 4G vs 5G smartphones
10.3.3.Example images of thermal management materials
10.3.4.Galaxy 3: teardown and how TIM is used
10.3.5.Galaxy S6: teardown and how TIM is used
10.3.6.Galaxy S7: teardown and how TIM is used
10.3.7.Galaxy S7: teardown and how TIM is used
10.3.8.Galaxy S9: teardown and how TIM is used
10.3.9.Galaxy S9: teardown and how TIM is used
10.3.10.Galaxy note 9 carbon water cooling system
10.3.11.Samsung S10 and S10e: teardown and how TIM is used
10.3.12.Galaxy S6 and S7 TIM area estimates
10.3.13.Oppo R17: teardown and how TIM is used
10.3.14.Huawei Mate Pro 30: teardown and how TIM is used
10.3.15.Huawei Mate Pro 20: teardown and how TIM is used
10.3.16.iPhone 4: teardown and how TIM is used
10.3.17.iPhone 5: teardown and how TIM is used
10.3.18.iPhone 7: teardown and how TIM is used
10.3.19.iPhone X: teardown and how TIM is used
10.3.20.LG v50 ThinQ 5G
10.3.21.LG v60 ThinQ 5G
10.3.22.RedMagic 5G
10.3.23.Samsung Galaxy S10 5G
10.3.24.Samsung Galaxy S20 5G
10.3.25.Samsung Galaxy Note 10+ 5G
10.3.26.Smartphone thermal material estimate summary
10.3.27.Heat spreader material forecast in smartphones by area (excl. display)
11.SUMMARY OF REPORT FORECASTS
11.1.5G station installation forecast (2020-2030) by frequency
11.2.5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto)
11.3.MIMO size forecast (2020-2030)
11.4.Antenna elements forecast
11.5.Antenna PCB material forecast
11.6.Power amplifier and beamforming component forecast
11.7.Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area
11.8.Die attach material forecasts by station size
11.9.Die attach mass for GaN and LDMOS forecast
11.10.Sintering market value forecast
11.11.TIM forecast for 5G antenna
11.12.TIM for 5G BBU
11.13.Power consumption forecast for 5G
11.14.TIM forecast for power supplies
11.15.Total TIM forecast for 5G stations
11.16.Heat spreader material forecast in smartphones by area (excl. display)
 

Report Statistics

Slides 382
 
 
 
 

Subscription Enquiry