This report is no longer available. Click here to view our current reports or contact us to discuss a custom report.
If you have previously purchased this report then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. | Purpose of this report |
1.2. | Wrong research emphasis |
1.3. | Primary conclusions: huge addressable zero-emission heat to electricity market |
1.4. | Primary conclusions: Technology options for electricity from heat |
1.5. | Primary conclusions: Thermoelectrics technical issues |
1.6. | Significance and cost breakdown of thermoelectrics |
1.7. | Price difference with temperature difference and power |
1.8. | Some recent research results |
1.9. | Patent analysis |
1.10. | Energy harvesting options |
1.10.1. | Thermoelectrics in context |
1.10.2. | Thermopower wave |
1.10.3. | Thermoacoustics |
1.10.4. | Cryoelectrics |
1.11. | Market forecasts |
1.11.1. | Thermoelectric energy harvesting modules by application 2021-2042 - number k |
1.11.2. | Thermoelectric energy harvesting modules by application 2021-2042 - unit value dollars |
1.11.3. | Thermoelectric energy harvesting transducers by application total value market 2021-2042 - $bn |
1.11.4. | Thermoelectric sensors and actuators 2019-2042 $ million |
1.11.5. | Wearable technology forecast 2020-2030 |
1.11.6. | IoT LPWAN connections 2018-2029 |
2. | INTRODUCTION |
2.1. | Emerging thermal harvesting |
2.1.1. | Choices |
2.1.2. | Researchers usually prioritise wrong parameters |
2.1.3. | Example of targeting right parameters and escape from tellurium |
2.2. | Thermoelectrics |
2.2.1. | Seebeck and Peltier effects |
2.2.2. | Thermoelectric system design |
2.2.3. | Limitations to address |
2.2.4. | Caution from TEC Microsystems |
2.2.5. | Design considerations for thermoelectric harvesting |
2.2.6. | Manufacturing and materials |
2.2.7. | Flexible, stretchable, printed and spray-on thermoelectrics |
2.2.8. | Tackle cost but also these ten aspects |
2.3. | Thermoelectric sensing |
2.3.1. | Overview |
2.3.2. | MEMS thermoelectric infrared sensors |
2.3.3. | Micro-thermoelectric gas sensor: hydrogen and atomic oxygen |
2.3.4. | Use as transfer standards |
2.3.5. | Fabric sensors |
2.3.6. | Self-powered sensors |
2.3.7. | Gas turbine sensing |
2.3.8. | Powering a WSN sensor |
2.3.9. | Thermite-powered sensor |
2.3.10. | greenTEG Switzerland sensors |
2.4. | Trend to flexible energy harvesting and sensing |
3. | LOW-POWER THERMOELECTRICS: FLEXIBLE, STRETCHABLE, IMPLANTABLE, WEARABLE, IOT, MEMS |
3.1. | Overview |
3.2. | Body power and space for wearable TEGs |
3.2.1. | Power emitting by location |
3.2.2. | Challenge with using thermoelectrics on the human body |
3.2.3. | Device size requirements in wearables |
3.2.4. | Trends for wristwear |
3.3. | Thermoelectric power output compared to other wearable harvesting |
3.4. | Flexible and bendable thermoelectrics |
3.4.1. | Choice of approaches |
3.4.2. | Example of a flexible film manufacturing process |
3.4.3. | Bendable formats |
3.5. | Flexible thermoelectric harvesters using skin temperature |
3.5.1. | AIST Japan |
3.5.2. | GeorgiaTech USA |
3.5.3. | KIST Korea |
3.5.4. | National University of Singapore |
3.5.5. | University of Colorado Boulder USA |
3.5.6. | UIUC China |
3.5.7. | Shanghai Institute of Technology China |
3.6. | Textile thermoelectrics |
3.6.1. | Chalmers University Sweden |
3.6.2. | Fraunhofer FEP Germany |
3.6.3. | Cotton wearable non-toxic: University of Massachusetts Amherst |
3.7. | Rigid low-power thermoelectrics |
3.7.1. | Wearables overview |
3.7.2. | Internet of Things overview |
3.7.3. | Matrix PowerWatch USA |
3.7.4. | Seiko Thermic watch failure |
3.7.5. | Implantable thermoelectric pacemakers |
3.7.6. | MEMS Micro TEG examples |
4. | HIGH-POWER THERMOELECTRICS INCLUDING HIGH TEMPERATURE |
4.1. | Needs and toolkit |
4.1.1. | High power overview |
4.1.2. | Metamaterials Boost Thermoelectrics |
4.1.3. | Jiko Power USA stove electricity for emerging countries |
4.1.4. | TECTEG Canada stove electricity |
4.2. | Emerging uses of high power TEGs |
4.3. | Better contact for efficient heat transfer |
4.3.1. | High power flexible thermoelectric generators |
4.3.2. | Cold-spray deposition: Lawrence Livermore with TTEC Thermoelectric USA |
4.4. | Concentrated solar TEG beats photovoltaics? King Saud University Saudi Arabia |
4.5. | Buildings and roads: radiative cooling at night instead of batteries, facades |
4.5.1. | Stanford University and University of California Los Angeles USA |
4.5.2. | Multi-thermal roof and facades: Universities of Colorado, Wyoming, California |
4.6. | Thermal roads and tires: University of Texas San Antonio USA |
4.7. | Geothermal power generation China, Japan, India, Germany, UK, USA, Canada |
4.8. | Industrial waste heat |
4.8.1. | Reality check |
4.8.2. | RGS Development, TEGnology, Komatsu KELK, ll-Vl Marlow, USARGS USA, Japan |
4.8.3. | Cidete Ingenieros Spain |
4.8.4. | Mitsubishi Materials Japan |
4.8.5. | Paderborn University Germany |
4.9. | Military and aerospace: Alteg Systems, Naval Postgraduate School USA |
4.9.1. | Overview |
4.9.2. | Bi-functional generator/ pre-cooler: DC power from aircraft bleed air: Alteg USA |
4.9.3. | Military waste heat: Naval Postgraduate School USA |
4.9.4. | Manta Ray submarine Northrop Grumman, Martin USA |
4.9.5. | Vehicle propulsion ATEG on land: Hubei University China |
4.9.6. | Military waste energy: US Naval Postgraduate School |
4.9.7. | Deep sea military power: Maritime Applied Physics Corporation |
4.10. | Water radiator actuation, home automation |
4.10.1. | EnOcean, H2O Degree Germany, USA |
4.10.2. | Kieback & Peter Germany |
4.10.3. | Caleffi Hydronic Solutions Italy |
4.11. | Remote site power GPT, ll-Vl Marlow USA |
4.12. | Global Power Technologies Canada |
4.13. | Teledyne Energy Systems USA |
4.14. | Radioisotope Thermoelectric generator RTG |
4.15. | Boosting solar power |
4.16. | Nuclear plant backup: University of Ontario Canada |
5. | NEW THERMOELECTRIC MATERIALS |
5.1. | Overview |
5.2. | Factors in inorganic materials and composites selection |
5.3. | Example: 2D materials |
5.4. | Materials design strategies |
5.5. | Example: Thin film and wearable thermoelectric materials |
5.5.1. | Overview |
5.5.2. | A*STAR Hong Kong |
5.5.3. | Bacterial nanocellulose: Institute of Materials Science Spain |
5.5.4. | Fluoro-elastomer rubbers: Osaka University Japan |
5.5.5. | PEDOT:PSS and composite: University of Michigan, Lawrence Berkeley USA |
5.5.6. | Polyamide fiber |
5.5.7. | Poly-GeSn Nagoya University Japan |
5.6. | various other inorganics and composites |
5.6.1. | Fe-V-W-Al alloy Technical University of Vienna Austria |
5.6.2. | Skutterudites and other inorganics: University of Houston, MIT USA |
5.7. | New materials for high temperatures NASA USA |
5.8. | Silicon, nanowires with nickel silicide nano-inclusions University of Texas etc USA |
6. | NEW THERMOELECTRIC AND ALLIED HARVESTING PRINCIPLES: THERMOPOWER WAVES, QUANTUM DOT, SPIN-DRIVEN, BROWNIAN MOTION, NEW THEORIES |
6.1. | Overview |
6.2. | Higher efficiencies in theory: University of Houston USA |
6.3. | Radically new approaches to thermoelectric harvesting |
6.3.1. | Shuttling: Polish Academy of Sciences Poland |
6.3.2. | Quantum dot thermoelectric Cambridge University UK |
6.3.3. | Spin driven thermoelectric effect STE Tohoku University Japan |
6.4. | Brownian motion: University of Arkansas USA |
6.5. | Thermopower wave electricity MIT USA |
7. | THERMOACOUSTIC, CRYOELECTRIC, PYROELECTRIC, OCEAN THERMAL GRADIENT HARVESTING |
7.1. | Thermoacoustic electricity generators |
7.1.1. | Technology |
7.1.2. | Efficiency |
7.1.3. | Thermoacoustic generator SWOT |
7.2. | Cryoelectric generator |
7.2.1. | Technology |
7.2.2. | Cryoelectric generator SWOT |
7.3. | Pyroelectric generation |
7.3.1. | Technology |
7.3.2. | Pyroelectric generator SWOT |
7.4. | Ocean thermal energy conversion OTEC |
7.4.1. | Technology |
7.4.2. | Ocean Energy Research Center: Makai Ocean Engineering USA |
7.4.3. | Ocean Thermal Energy Generator SWOT |
8. | 68 COMPANIES COMPARED |
Slides | 288 |
---|---|
Forecasts to | 2042 |