This report is no longer available. Click here to view our current reports or contact us to discuss a custom report.
If you have previously purchased this report then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY AND CONCLUSIONS |
1.1. | Purpose of this report and methodology |
1.2. | Why is transparent electronics becoming a large business? |
1.3. | Why make electronics transparent? |
1.4. | Why make transparent things multifunctional? |
1.5. | 11 major conclusions |
1.6. | Smart city robot shuttles need many forms of transparent electronics and display |
1.7. | Examples of deployed transparent electronics and displays |
1.8. | Transparent micro LED vs OLED |
1.9. | Examples of planned transparent electronics |
1.10. | Transparent electronics roadmap 2021-2050 |
1.11. | Market forecast for transparent electronics by four categories $ million 2021-2041 |
1.12. | Transparent display forecasts percentage $M by four technologies 2021-2041 |
1.13. | 22 backup forecasts |
2. | INTRODUCTION |
2.1. | Transparent electronics choices |
2.2. | Evolution of transparent displays |
2.3. | Evolution of transparent circuits |
2.4. | Transparent mobile phones get cleverer but for what? |
2.4.1. | Polytron |
2.4.2. | LG |
2.4.3. | Oppo |
2.4.4. | Huawei |
2.4.5. | Samsung |
2.4.6. | Tianma |
2.5. | Technologies in future zero-emission smart cities |
2.6. | Smart roads, other ground area, environs |
2.6.1. | Roads and plazas |
2.6.2. | Solar road with integral lit markers - concept |
2.6.3. | Translucent photovoltaic barriers |
2.7. | Robot shuttles will be major adopter |
3. | TRANSPARENT LIGHT-EMITTING DISPLAYS: MINI LED, MICRO LED, QD |
3.1. | Emerging markets for transparent light-emitting displays |
3.1.1. | Overview of miniLED, µLED, QLED, OLED |
3.1.2. | Micro and mini LED types |
3.1.3. | How quantum dot QD competes |
3.1.4. | Limited role for miniLEDs |
3.1.5. | µLED in action |
3.2. | Display requirements |
3.2.1. | Resolution |
3.2.2. | Highest transparency |
3.2.3. | Simple structure |
3.2.4. | Sensor integration |
3.3. | Appraisal by application |
3.3.1. | Overview |
3.3.2. | Augmented and mixed reality displays |
3.4. | Technology improvements to enable future micro LED displays |
4. | TRANSPARENT OLED OPPORTUNITIES |
4.1. | Transparent OLED history and current status |
4.2. | Commercial success |
4.3. | Merchandising and exhibits |
4.4. | GPO Display added value |
4.4.1. | Multi-functional windows and promotion |
4.5. | Transparent OLED technology |
4.5.1. | Overview |
4.5.2. | Touch-controlled transparent OLED technology |
4.5.3. | Projected capacitive (P-Cap) touch screen technology |
4.5.4. | New materials for OLED |
5. | TRANSPARENT PHOTOVOLTAICS |
5.1. | Overview |
5.1.1. | SOFT |
5.1.2. | Transparency requirements and thin film |
5.1.3. | Five fundamental operating principles |
5.1.4. | Some of the important parameters |
5.1.5. | Single crystal scSi vs polycrystal pSi vs amorphous |
5.1.6. | Best research-cell efficiencies assessed 1975-2020 |
5.1.7. | Important PV options beyond silicon compared |
5.1.8. | Materials problems being tackled |
5.1.9. | Photovoltaics progresses to become paint and user material |
5.2. | Windows for buildings and vehicles, smart watch glass |
5.2.1. | Vehicles: Hyundai |
5.2.2. | Smart watch glass: Garmin |
5.2.3. | Solar windows in patterned silicon: Onyx |
5.2.4. | Smartflex solar facades |
5.3. | Organic photovoltaics |
5.3.1. | Competitive situation |
5.3.2. | OPV progress to commercialisation 2000-2040 |
5.3.3. | Sunew |
5.3.4. | Heliatek |
5.3.5. | Opvius and Armor |
5.3.6. | Device architecture and Sigma Aldrich materials |
5.3.7. | Materials: Merck, DuPont Teijin |
5.3.8. | What substrates to choose? |
5.3.9. | Typical device architectures |
5.3.10. | Film morphology and degradation control for bulk heterojunction |
5.3.11. | R2R solution vs R2R evaporation |
5.3.12. | Donor polymers |
5.3.13. | Donor small molecules |
5.3.14. | Typical acceptor materials |
5.3.15. | Progress in solution processing |
5.3.16. | Progress in tandem cell evaporation |
5.3.17. | Solution processed 17.5% tandem OPV |
5.3.18. | R2R solution vs R2R evaporation |
5.3.19. | Major technical challenges with R2R |
5.3.20. | Barrier/encapsulation challenge |
5.3.21. | Transparent electrode |
5.3.22. | Big advance 2018-2020: non-fullerene acceptors NFA |
5.4. | Perovskite photovoltaics |
5.4.1. | Overview |
5.4.2. | Perovskite structure and device architecture |
5.4.3. | Working principle |
5.4.4. | Architectures |
5.4.5. | Value propositions and roadmap to 2040 |
5.4.6. | Perovskite materials |
5.4.7. | Why perovskite is so efficient |
5.4.8. | Efficiency versus transmission |
5.4.9. | Roadmap to lead-free perovskite |
5.4.10. | Improving life |
5.4.11. | Flexible perovskite solar cells |
5.4.12. | Deposition processes for perovskite films |
5.4.13. | Perovskite module cost estimation |
5.4.14. | Future perovskite PV system cost breakdown |
5.5. | Dual technology, quantum dot, wild card photovoltaics |
5.5.1. | Perovskite silicon tandem: EPFL, OxfordPV, Swift Solar |
5.5.2. | Perovskite on CIGS |
5.5.3. | Quantum dot |
5.5.4. | Toxicity |
5.5.5. | Wild cards: 2D materials, nantennas |
5.6. | Agrivoltaics comes to greenhouses: Soliculture |
5.7. | Solar concentrators |
5.8. | Quantum dot solar market |
6. | TRANSPARENT CIRCUITS |
6.1. | Overview: clocks and novelties |
6.2. | Conformally transparent |
6.3. | RadarGlass™ |
6.3.1. | The problem |
6.3.2. | The solution |
7. | ELECTRICALLY DARKENING GLASS |
7.1. | Electronic shades |
7.2. | Suspended particle devices |
7.3. | Principle of electrochromic glass |
7.4. | Technology comparison |
7.5. | Mercedes Magic Sky Control |
7.6. | Rivian Electrochromic Glass Roof? |
7.7. | Mobile office concepts |
7.8. | Toyota e-Palette robot shuttle in office mode |
7.9. | Tesla |
7.10. | Market applications mostly buildings... |
7.11. | Novel electrochromic film |
7.12. | Three in one smart window by NREL |
8. | ENABLING CONSTRUCTS TRANSPARENT METAMATERIALS, CONDUCTIVE FILMS AND BARRIER LAYERS |
8.1. | Overview |
8.2. | Transparent metamaterials |
8.2.1. | Introduction |
8.2.2. | Photonic metamaterials |
8.2.3. | New metamaterial optimises photovoltaic cooling and capture |
8.2.4. | Metamaterial guiding and enhancing light |
8.3. | Transparent conductive patterns |
8.3.1. | Overview |
8.3.2. | Much can be done with metal patterning alone |
8.3.3. | Transparent conductive layers for LED screens |
8.4. | Transparent barrier layers |
8.4.1. | Why barriers and encapsulation? |
8.4.2. | Barrier performance requirements (permeation rates) |
8.4.3. | Barrier requirements: towards flexibility and rollability |
8.4.4. | Plastic substrates are a challenge |
8.4.5. | The basis of the multi-layer approach |
8.4.6. | Status of R2R barrier films in performance, web width and readiness/scale |
8.4.7. | Challenges of R2R barrier film production |
8.4.8. | From glass to multi-layer films to multi-layer inline thin film encapsulation |
8.4.9. | Trends in TFE: Past, present and future of deposition |
8.4.10. | Benchmarking different barrier solutions |
8.4.11. | Evolution of production parameters to enable multi-layer barrier cost reduction |
Slides | 305 |
---|---|
ISBN | 9781913899288 |