This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Micro-LED Displays 2020-2030 |
1.2. | Abbreviation |
1.3. | Executive Summary |
1.4. | What is the report about and who should read it? |
1.5. | Existing large mini-/micro-LED display announcements |
1.6. | Expectation of future displays |
1.7. | Status of OLED |
1.8. | Strategies of QDs in display |
1.9. | Characteristic comparison of different display technologies |
1.10. | Horizontal comparison |
1.11. | Why Micro-LED Displays? |
1.12. | Micro-LED value propositions compared with LCD, OLED, QD |
1.13. | Importance of identifying core value propositions |
1.14. | Core value propositions of µLED displays 1 |
1.15. | Core value propositions of µLED displays 2 |
1.16. | Core value propositions of µLED displays 3 |
1.17. | Core value propositions of µLED displays 4 |
1.18. | Core value propositions of µLED displays 5 |
1.19. | Analysis of micro-LED's value propositions |
1.20. | Influence of resolution for applications |
1.21. | Micro-LED display types |
1.22. | Potential applications for micro-LED displays |
1.23. | Matrix analysis |
1.24. | Display requirements for XR applications |
1.25. | Application analysis: Augmented/mixed reality |
1.26. | Application analysis: Virtual reality |
1.27. | Application analysis: Large video displays |
1.28. | Application analysis: Televisions and monitors |
1.29. | Application analysis: Automotive displays |
1.30. | Application analysis: Mobile phones |
1.31. | Application analysis: Smart watches and wearables |
1.32. | Application analysis: Tablets and laptops |
1.33. | Micro-LED application roadmap |
1.34. | Emerging displays enabled by micro-LED technology |
1.35. | Micro-LED display fabrication flowchart |
1.36. | Technologies of micro-LED displays |
1.37. | Challenge transition for micro-display manufacturing |
1.38. | Current achievements of micro-LED displays |
1.39. | Summary of challenges for micro-LED displays |
1.40. | Issues with RGB micro-LED chips |
1.41. | Micro-LED performance summary |
1.42. | Full colour realization |
1.43. | Quantum dots for µLEDs |
1.44. | What kind of role are mini LEDs playing? |
1.45. | Regional development: Taiwan |
1.46. | Regional development: Mainland China |
1.47. | Regional development: Japan & Korea |
1.48. | Regional development: Europe |
1.49. | Regional development: US |
1.50. | Supply chain status |
1.51. | Supply chain reshuffle |
1.52. | Possible supply chain for micro-LED displays |
1.53. | Scenarios of supply chain dominance |
1.54. | Supply chain influenced by trade war and coronavirus |
2. | INTRODUCTION TO MICRO-LED DISPLAY |
2.1. | Introduction to Micro-LED Display |
2.2. | From traditional LEDs... |
2.3. | ...to Micro-LEDs |
2.4. | Comparisons of LEDs for displays |
2.5. | Correlations between mini-LED, micro-LED and fine pitch LED displays |
2.6. | From traditional LEDs to micro-LED |
2.7. | Display types based on micro-LEDs |
2.8. | Advantages of AM micro-LED micro-displays |
2.9. | LED size definitions |
2.10. | Micro-LED displays: size is an important feature |
2.11. | Micro LED displays: beyond the size |
2.12. | A better definition? |
2.13. | Micro-LED display panel structure |
3. | EPITAXY AND CHIP MANUFACTURING |
3.1. | Introduction to light-emitting diodes |
3.1.1. | History of solid-state lighting |
3.1.2. | What is an LED? |
3.1.3. | How does an LED work? |
3.1.4. | Homojunction vs. heterojunction |
3.1.5. | LEDs by package technique 1 |
3.1.6. | LEDs by package technique 2 |
3.1.7. | Typical LED and packaged LED sizes |
3.1.8. | Comparison between SMD and COB |
3.1.9. | COB for displays |
3.1.10. | List of global major LED companies with introduction |
3.2. | Epitaxy |
3.2.1. | Bandgap vs. lattice constant for III-V semiconductors |
3.2.2. | Materials for commercial LED chips 1 |
3.2.3. | Materials for commercial LED chips 2 |
3.2.4. | Green gap |
3.2.5. | Epitaxy substrate |
3.2.6. | Wafer patterning 1 |
3.2.7. | Wafer patterning 2 |
3.2.8. | Wafer patterning 3 |
3.2.9. | Epitaxy methods |
3.2.10. | Metal organic chemical vapor deposition |
3.2.11. | Pros and cons of MOCVD |
3.2.12. | Epitaxial growth requirement |
3.2.13. | Offering from Aixtron and Veeco |
3.2.14. | Veeco's offering |
3.2.15. | Engineered substrate |
3.2.16. | Wafer uniformity 1 |
3.2.17. | Wavelength uniformity 2 |
3.2.18. | Solutions for wafer nonuniformity |
3.3. | Chip manufacturing |
3.3.1. | LED fabrication flowchart |
3.3.2. | Typical RGB LED designs |
3.3.3. | LED chip structures 1 |
3.3.4. | LED chip structures 2 |
3.3.5. | LED chip structure illustrations |
3.3.6. | Future of the LED chip structure |
3.3.7. | Epi-film transfer |
3.3.8. | Fabrication of vertical GaN-LEDs |
3.4. | Micro-LED Performances |
3.4.1. | Influence of micro-LED performance |
3.4.2. | EQE of micro-LED versus current density 1 |
3.4.3. | EQE of micro-LED versus current density 2 |
3.4.4. | Efficiency droop |
3.4.5. | Bowing of wavelength shift |
3.4.6. | Size dependence of micro-LEDs 1 |
3.4.7. | Size dependence of micro-LEDs 2 |
3.4.8. | Size dependence of micro-LEDs 3 |
3.4.9. | Efficiencies and requirement of RGB micro-LEDs |
3.4.10. | Surface recombination |
3.4.11. | Sidewall effect |
3.4.12. | Efficiency improvement |
4. | TRANSFER AND ASSEMBLY |
4.1.1. | Introduction |
4.1.2. | Mass transfer and assembly technologies |
4.1.3. | Requirements of mass transfer |
4.1.4. | Chiplet mass transfer types |
4.2. | Chiplet Mass Transfer |
4.2.1. | Introduction to chiplet mass assembly |
4.2.2. | Chiplet mass transfer scenario 1 |
4.2.3. | Chiplet mass transfer scenario 2 |
4.2.4. | Comparison of mass transfer technologies |
4.2.5. | Comparison of transfer technologies of different companies |
4.2.6. | Transfer yield |
4.3. | Fine pick and place |
4.3.1. | Overview of Elastomeric stamp |
4.3.2. | Transfer process flow |
4.3.3. | Elastomeric stamp: pros and cons |
4.3.4. | Stamp yield vs. defect density |
4.3.5. | Key technologies for micro-LED mass transfer |
4.3.6. | Substrate treatment |
4.3.7. | Kinetic control of the elastomeric stamp adhesion |
4.3.8. | Elastomeric stamp |
4.3.9. | Pitch size determination |
4.3.10. | X-Celeprint |
4.3.11. | µLED fabrication |
4.3.12. | µLEDs from sapphire substrate |
4.3.13. | Passive matrix displays made by micro-transfer printing |
4.3.14. | Passive matrix μLED display fabrication 1 |
4.3.15. | Passive matrix μLED display fabrication 2 |
4.3.16. | Active matrix displays made by micro-transfer printing |
4.3.17. | Active matrix μLED display fabrication |
4.3.18. | Automated micro-transfer printing machinery |
4.3.19. | Capillary-assisted transfer printing |
4.3.20. | Mikro Mesa: Transfer technology |
4.3.21. | Mikro Mesa: Transfer flowchart 1 |
4.3.22. | Mikro Mesa: Transfer flowchart 2 |
4.3.23. | Mikro Mesa: Transfer stamp |
4.3.24. | Mikro Mesa: Transfer design target |
4.3.25. | PlayNitride: Mass transfer for micro-LED chips |
4.3.26. | Visionox 1 |
4.3.27. | Visionox 2 |
4.3.28. | ITRI: Chip fabrication |
4.3.29. | ITRI's mass transfer process |
4.3.30. | ITRI's transfer module |
4.3.31. | Overview of electrostatic array |
4.3.32. | Apple/LuxVue 1 |
4.3.33. | Apple/LuxVue 2 |
4.3.34. | VerLASE's large area assembly platform |
4.3.35. | Interposer idea |
4.4. | Self assembly |
4.4.1. | Introduction of fluidic-assembly |
4.4.2. | eLux: introduction |
4.4.3. | Fabrication of micro-LED chip array |
4.4.4. | eLux's fluidic assembly |
4.4.5. | eLux's display prototypes |
4.4.6. | eLux's supply chain |
4.4.7. | eLux's core patent technology 1 |
4.4.8. | eLux's core patent technology 2 |
4.4.9. | eLux's core patent technology 3 |
4.4.10. | eLux's core patent technology 4 |
4.4.11. | eLux's core patent technology 5 |
4.4.12. | eLux's core patent technology 6 |
4.4.13. | Image quality comparison |
4.4.14. | SWOT analysis of eLux's technology |
4.4.15. | Other fluidic assembly techniques |
4.4.16. | Fluidic assembly (physical): overview |
4.4.17. | Alien |
4.4.18. | Alien's fluidic self assembly technology |
4.4.19. | Self-assembly based on shape/geometry matching |
4.4.20. | Shape-based self assembly |
4.4.21. | Fluidic assembly (electrophoretic): overview |
4.4.22. | Electrophoretic positioning of LEDs |
4.4.23. | PARC's xerographic micro-assembly Printing 1 |
4.4.24. | PARC's xerographic micro-assembly Printing 2 |
4.4.25. | Fluidic-assembly (surface energy): overview |
4.4.26. | Mechanism of surface-tension-driven fluidic assembly |
4.4.27. | Surface tension based fluidic assembly 1 |
4.4.28. | Surface tension based fluidic assembly 2 |
4.4.29. | Surface tension based fluidic assembly 3 |
4.4.30. | Surface tension based fluidic assembly 4 |
4.4.31. | Fluidic-assembly (magnetic): overview |
4.4.32. | Magnetically-assisted assembly |
4.4.33. | Fluidic-assembly (photoelectrochemical): overview |
4.4.34. | Photoelectrochemically driven fluidic-assembly |
4.4.35. | Fluidic-assembly (combination): overview |
4.4.36. | Chip mounting apparatus |
4.4.37. | Summary of fluidic assembly |
4.4.38. | SelfArray |
4.5. | Laser enabled transfer |
4.5.1. | Overview of laser enabled transfer |
4.5.2. | Laser beam requirement |
4.5.3. | Uniqarta's parallel laser-enabled transfer technology 1 |
4.5.4. | Uniqarta's parallel laser-enabled transfer technology 2 |
4.5.5. | Uniqarta's parallel laser-enabled transfer technology 3 |
4.5.6. | Uniqarta's parallel laser-enabled transfer technology 4 |
4.5.7. | Uniqarta's parallel laser-enabled transfer technology 5 |
4.5.8. | QMAT's beam-addressed release technology |
4.5.9. | Optovate's technology 1 |
4.5.10. | Optovate's technology 2 |
4.5.11. | Coherent's approach |
4.5.12. | Toray's offering |
4.5.13. | Visionox's achievement |
4.6. | Other chiplet mass transfer techniques |
4.6.1. | Korean Institute of Machinery and Materials (KIMM) 1 |
4.6.2. | Korean Institute of Machinery and Materials (KIMM) 2 |
4.6.3. | VueReal's cartridge printing technique |
4.6.4. | VueReal's micro printer |
4.6.5. | Innovasonic's technology |
4.6.6. | Rohinni's technology |
4.6.7. | Two-step micro-transfer technology 1 |
4.6.8. | Two-step micro-transfer technology 2 |
4.6.9. | Two-step micro-transfer technology 3 |
4.6.10. | Two-step micro-transfer technology 4 |
4.6.11. | Micro-transfer using a stretchable film |
4.6.12. | Micro-pick-and-place |
4.7. | Monolithic Hybrid Integration |
4.7.1. | Monolithic integration |
4.7.2. | Flip-chip hybrid integration |
4.7.3. | Monolithic hybrid integration structure |
4.7.4. | Selective transfer by selective bonding-debonding |
4.7.5. | Pros and cons of monolithic hybrid integration |
4.7.6. | Players on monolithic hybrid integration |
4.8. | All-In-One Transfer |
4.8.1. | All-in-one CMOS driving |
4.8.2. | Pros and cons of all-in-one CMOS driving technique |
4.9. | Fully Monolithic Integration |
4.9.1. | Introduction of fully monolithic integration |
4.9.2. | JBD's integration technology |
4.9.3. | Lumiode approach |
4.9.4. | Lumiode approach, process details |
4.9.5. | Temperature performance for the crystallization |
4.9.6. | Wafer from Lumiode |
4.9.7. | Ostendo's approach |
4.9.8. | Ostendo's QPI structure |
4.10. | GaN on Silicon |
4.10.1. | GaN-on-Si for various application markets |
4.10.2. | GaN on silicon epi types |
4.10.3. | Challenges of GaN-on-Silicon epitaxy |
4.10.4. | Value propositions of GaN-on-Si 1 |
4.10.5. | Value propositions of GaN-on-Si 2 |
4.10.6. | GaN on sapphire vs. on silicon |
4.10.7. | GaN-on-Si approach |
4.10.8. | Is GaN-on-Si the ultimate option? |
4.10.9. | Players working on GaN micro-LEDs on silicon |
4.11. | Nanowires |
4.11.1. | Comparison between 2D and 3D micro-LEDs |
4.11.2. | GaN epitaxy on silicon substrate |
4.11.3. | Aledia process flow |
4.11.4. | Aledia's nanowire technology |
4.11.5. | Front size device technology |
4.11.6. | Nanowires growth on silicon substrate |
4.11.7. | Size influence on nanowire's efficiency |
4.11.8. | Native EL RGB nanowires |
4.11.9. | 3D technology for small-display applications |
4.11.10. | Micro-display enabled by nanowires and 3D integration |
4.11.11. | Future of the nanowire approach |
4.12. | Bonding and interconnection |
4.12.1. | Classification |
4.12.2. | Summary |
4.12.3. | Wire bonding and flip chip bonding |
4.12.4. | Interconnection by resin reflow |
4.12.5. | Microtube interconnections |
4.12.6. | Microtube fabrication |
4.12.7. | Transfer and interconnection process by microtubes |
5. | TESTING |
5.1. | Testing techniques |
5.2. | PL vs. EL testing |
5.3. | EL test by Tesoro Scientific 1 |
5.4. | EL test by Tesoro Scientific 2 |
5.5. | Camera-based microscopic imaging system |
5.6. | Inspection solution by Toray 1 |
5.7. | Inspection solution by Toray 2 |
5.8. | Instrument System's solution |
5.9. | PL+AOI |
5.10. | TTPCON's solution |
5.11. | Cathodoluminescence used for testing |
5.12. | Trends of testing |
6. | DEFECT MANAGEMENT |
6.1. | Introduction |
6.2. | Defect types |
6.3. | Redundancy |
6.4. | Repair 1 |
6.5. | Repair 2 |
6.6. | Laser micro trimming 1 |
6.7. | Laser micro trimming 2 |
6.8. | Defect compensation by QDs |
7. | MICRO-LED DISPLAY FULL-COLOUR REALIZATION |
7.1.1. | Strategies for full colour realization |
7.1.2. | RGB micro-LEDs vs. blue micro-LED + QD 1 |
7.1.3. | RGB micro-LEDs vs. blue micro-LED + QD 2 |
7.2. | Colour filters |
7.2.1. | Colour filters |
7.2.2. | Colour filter process flow: black matrix process |
7.2.3. | Colour filter process flow: RGB process 1 |
7.2.4. | Colour filter process flow: RGB process 2 |
7.3. | Optical lens synthesis |
7.3.1. | Full colour realized by optical lens synthesis |
7.3.2. | Full colour realization for projectors |
7.4. | Do phosphors work for micro-LED displays? |
7.4.1. | Introduction to phosphors 1 |
7.4.2. | Introduction to phosphors 2 |
7.4.3. | Requirements for phosphors in LEDs |
7.4.4. | Table of phosphor materials |
7.4.5. | Search for narrow FWHM red phosphors |
7.4.6. | Common and emerging red-emitting phosphors |
7.4.7. | Red phosphor options: TriGainTM from GE |
7.4.8. | Reliability of TriGain |
7.4.9. | Commercial progress of GE's narrowband red phosphor |
7.4.10. | Small sized PFS phosphor |
7.4.11. | Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor |
7.4.12. | Thermal stability of common RGY phosphors |
7.4.13. | Narrow band green phosphor |
7.4.14. | High performance organic phosphors |
7.4.15. | Toray's organic colour conversion film |
7.4.16. | Colour coverage of Toray's colour conversion films |
7.4.17. | Stability of Toray's colour conversion films |
7.4.18. | Response time feature of Toray's colour conversion films |
7.4.19. | Suppliers of phosphors |
7.5. | Quantum dot approach |
7.5.1. | Introduction to quantum dots |
7.5.2. | Quantum dots used for micro-LED displays |
7.5.3. | QDs vs. phosphors: particle size |
7.5.4. | QDs vs. phosphors: response time |
7.5.5. | QDs vs. phosphors: colour tunability |
7.5.6. | QDs vs. phosphors: stability |
7.5.7. | QDs vs. phosphors: FWHM |
7.5.8. | Pros and cons of QD converters |
7.5.9. | Basic requirements of QDs for micro-LED displays |
7.5.10. | Trade-off between efficiency and leakage |
7.5.11. | Efficiency drop and red shift |
7.5.12. | Thickness of the QD layer for absorption |
7.5.13. | Display structure with QDs |
7.5.14. | Polarizers, short-pass filters, and other additional layers? |
7.5.15. | QD converters for µLED displays |
7.5.16. | Photolithography process |
7.5.17. | Successive patterning of red and green QD of various sizes |
7.5.18. | Quantum-dots colour conversion layer |
7.5.19. | Inkjet printed QD 1 |
7.5.20. | Inkjet printed QD 2 |
7.5.21. | Full-colour emission of quantum-dot-based micro LED display by aerosol jet technology |
7.5.22. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 1 |
7.5.23. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 2 |
7.5.24. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 3 |
7.5.25. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 4 |
7.5.26. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 5 |
7.5.27. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays 6 |
7.6. | Quantum well approach |
7.6.1. | Quantum wells |
7.6.2. | Conclusions |
8. | LIGHT MANAGEMENT |
8.1. | Light management approach summary |
8.2. | Layers to optimize current distribution for better light extraction |
8.3. | InfiniLED's approach to increase light extraction efficiency 1 |
8.4. | InfiniLED's approach to increase light extraction efficiency 2 |
8.5. | Methods to capture light output |
8.6. | Micro-catadioptric optical array for better directionality |
9. | BACKPLANES AND DRIVING |
9.1. | Backplane and driving options for Micro-LED displays |
9.2. | Introduction to metal oxide semiconductor field-effect transistors |
9.3. | Introduction to thin film transistors |
9.4. | Introduction to complementary metal oxide semiconductor |
9.5. | Introduction to backplane |
9.6. | TFT materials |
9.7. | Pixel driving for OLED |
9.8. | LCD pixel structure |
9.9. | TFT backplane |
9.10. | Passive matrix addressing |
9.11. | Passive driving structure |
9.12. | Active matrix addressing |
9.13. | Comparison between PM and AM addressing |
9.14. | Transistor-micro-LED connection design |
9.15. | Driving for micro-LEDs |
9.16. | PAM vs. PWM |
9.17. | Pulse width modulation |
9.18. | Driving voltage |
9.19. | RGB driver |
9.20. | Active matrix micro-LEDs with LTPS TFT backplane |
9.21. | Conclusion |
10. | COST ANALYSIS |
10.1. | Cost basics |
10.2. | Micro-LED cost vs. Die size |
10.3. | Cost assumption |
10.4. | Cost analysis |
10.5. | Economics of micro-LED: cost down paths |
11. | MARKET ANALYSIS |
12. | PLAYERS AND CASE STUDIES |
12.1. | Players discussed in this report |
12.2. | Aledia |
12.3. | Aledia: introduction |
12.4. | Scalability to larger silicon substrate |
12.5. | Aledia's quasi-fabless business model |
12.6. | Integration process of Aledia's WireLED display |
12.7. | Wafer uniformity of nanowires |
12.8. | Colour conversion of WireLEDs |
12.9. | Interconnection options |
12.10. | Aledia's display modules |
12.11. | ALLOS Semiconductors |
12.12. | ALLOS Semiconductors: introduction |
12.13. | Strain management and emission uniformity 1 |
12.14. | Strain management and emission uniformity 2 |
12.15. | Strain management |
12.16. | Aoto Electronics |
12.17. | Apple |
12.18. | Apple |
12.19. | AU Optronics |
12.20. | AU Optronics |
12.21. | AUO's LTPS TFT driven micro-LED display 1 |
12.22. | AUO's LTPS TFT driven micro-LED display 2 |
12.23. | CEA-Leti |
12.24. | CEA-Leti: introduction |
12.25. | Demos by hybridization technology |
12.26. | Display performance |
12.27. | Process of fabricating hybridization micro-displays |
12.28. | Process of fabricating monolithic micro-displays |
12.29. | Novel approach for monolithic display fabrication |
12.30. | EpiPix |
12.31. | Introduction of EpiPix |
12.32. | EpiPix's technique |
12.33. | glō |
12.34. | Introduction of glō |
12.35. | Glō's technology |
12.36. | Glō's prototypes |
12.37. | ITRI |
12.38. | ITRI development of micro-LEDs |
12.39. | ITRI's offering |
12.40. | Micro-LED device characteristics |
12.41. | Reliability test |
12.42. | ITRI's MicroLED displays |
12.43. | ITRI's transparent MicroLED displays |
12.44. | ITRI |
12.45. | Jade Bird Display |
12.46. | Jade Bird Display: introduction |
12.47. | Existing hybrid integration technology by flip chip techique |
12.48. | Device fabrication 1 |
12.49. | Device fabrication 2 |
12.50. | Device structure and architecture |
12.51. | micro-LEDs for the JBD's micro-displays |
12.52. | JBD's monochromatic AM micro-LED micro-displays |
12.53. | AM micro-LED with directional emission |
12.54. | Application: 3 colour LED projector |
12.55. | High PPI AM micro-LED micro-display |
12.56. | AM micro-LED chips |
12.57. | Prototype for AR/VR |
12.58. | Konka |
12.59. | Konka's efforts on Micro-LED displays |
12.60. | Kyocera |
12.61. | Kyocera: high PPI micro-LED display |
12.62. | Kyocera: display design |
12.63. | LG |
12.64. | Micro LED Signage |
12.65. | Lumens |
12.66. | Lumens' micro-LED displays |
12.67. | Lumen's prototypes |
12.68. | Lumiode |
12.69. | Lumiode: introduction |
12.70. | Lumiode approach, process details |
12.71. | Lumiode's micro-LED performance |
12.72. | Lumiode's device performance |
12.73. | Micro Nitride |
12.74. | Micro Nitride: Introduction |
12.75. | Micro Nitride's technology 1 |
12.76. | Micro Nitride's technology 2 |
12.77. | Mikro Mesa |
12.78. | About Mikro Mesa |
12.79. | Mikro Mesa's micro-LEDs |
12.80. | Mikro Mesa: Current injection |
12.81. | Nanjing CEC Panda FPD Technology |
12.82. | Introduction of CEC Panda |
12.83. | Micro-LED and oxide development of Panda |
12.84. | Plessey |
12.85. | Plessey: GaN-on-Silicon |
12.86. | Plessey's display development roadmap |
12.87. | LED manufacturing |
12.88. | Pixel development |
12.89. | RGB GaN on silicon |
12.90. | Plessey's core development |
12.91. | Prototype |
12.92. | PlayNitride |
12.93. | PlayNitride: Introduction |
12.94. | Role of PlayNitride at micro-LED ecosystem |
12.95. | PixeLED display structure |
12.96. | PlayNitride: Prototypes 1 |
12.97. | PlayNitride : Prototypes 2 |
12.98. | PlayNitride : Prototypes 3 |
12.99. | PlayNitride: Prototypes 4 |
12.100. | Rohinni |
12.101. | Introduction of Rohinni |
12.102. | Samsung |
12.103. | The Wall vs. The Window |
12.104. | LED Cinema Screen |
12.105. | Saphlux |
12.106. | Saphlux: introduction |
12.107. | NPQD technology |
12.108. | Sharp |
12.109. | Sharp: introduction |
12.110. | Process flow of Silicon Display |
12.111. | Display driver |
12.112. | Monolithic micro-LED array |
12.113. | Full colour realization |
12.114. | Prototypes made by Sharp |
12.115. | Sony |
12.116. | Sony: initial efforts |
12.117. | Sony: scalable display system |
12.118. | Sony: precise tiling 1 |
12.119. | Sony: precise tiling 2 |
12.120. | Sony: micro-LEDs |
12.121. | Sony: viewing angle advantages |
12.122. | Sony: active matrix driving with micro IC |
12.123. | Sony: HDR reproducibility |
12.124. | Sony: business strategy |
12.125. | Stan (Shenzhen) Technology |
12.126. | Stan Technology |
12.127. | TCL |
12.128. | The Cinema Wall |
12.129. | TFT backplane-based micro-LED displays |
12.130. | Visionox |
12.131. | Visionox's planning |
12.132. | VueReal |
12.133. | VueReal: introduction |
12.134. | VueReal: high efficient micro-LEDs |
12.135. | VueReal: Inspection |
12.136. | VueReal: curing |
12.137. | VueReal: prototypes |
13. | APPENDIX |
13.1. | Colours and pixels |
13.2. | What is resolution? |
13.3. | Pixel pitch and fill factor |
13.4. | EQE and IQE |
13.5. | 3D colour volume |
13.6. | LCD panel structure |
13.7. | Active matrix-LCD structure |
Slides | 583 |
---|---|
Forecasts to | 2030 |