This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | What is the report about and who should read it? |
1.2. | Existing large mini-/micro-LED display announcements |
1.3. | Expectation of future displays |
1.4. | Status of OLED |
1.5. | Strategies of QDs in display |
1.6. | Characteristic comparison of different display technologies |
1.7. | Horizontal comparison |
1.8. | Why Micro-LED Displays? |
1.9. | Micro-LED value propositions compared with LCD, OLED, QD |
1.10. | Importance of identifying core value propositions |
1.11. | Core value propositions of µLED displays |
1.12. | Analysis of micro-LED's value propositions |
1.13. | Influence of resolution for applications |
1.14. | Micro-LED display types |
1.15. | Potential applications for micro-LED displays |
1.16. | Matrix analysis |
1.17. | Display requirements for XR applications |
1.18. | Application analysis: Augmented/mixed reality |
1.19. | Application analysis: Virtual reality |
1.20. | Application analysis: Large video displays |
1.21. | Application analysis: Televisions and monitors |
1.22. | Application analysis: Automotive displays |
1.23. | Application analysis: Mobile phones |
1.24. | Application analysis: Smart watches and wearables |
1.25. | Application analysis: Tablets and laptop |
1.26. | Emerging displays enabled by micro-LED technology |
1.27. | Micro-LED display development stage |
1.28. | Micro-LED application roadmap |
1.29. | Micro-LED display fabrication flowchart |
1.30. | Technologies of micro-LED displays |
1.31. | Complex micro-LED display design |
1.32. | Challenge transition for micro-display manufacturing |
1.33. | Current achievements of micro-LED displays |
1.34. | Summary of challenges for micro-LED displays |
1.35. | Issues with RGB micro-LED chips |
1.36. | Micro-LED performance summary |
1.37. | Full colour realization |
1.38. | Quantum dots for µLEDs |
1.39. | Regional development: Taiwan |
1.40. | Regional development: Mainland China |
1.41. | Regional development: Japan & Korea |
1.42. | Regional development: Europe |
1.43. | Regional development: US |
1.44. | Supply chain status |
1.45. | Supply chain reshuffle |
1.46. | Possible supply chain for micro-LED displays |
1.47. | Scenarios of supply chain dominance |
1.48. | Supply chain influenced by trade war and coronavirus |
2. | INTRODUCTION TO MICRO-LED DISPLAY |
2.1. | From traditional LEDs... |
2.2. | ...to Micro-LEDs |
2.3. | Comparisons of LEDs for displays |
2.4. | Mini-LEDs and Micro-LEDs |
2.5. | Correlations between mini-LED, micro-LED and fine pitch LED displays |
2.6. | From traditional LEDs to micro-LED |
2.7. | Display types based on micro-LEDs |
2.8. | Advantages of AM micro-LED micro-displays |
2.9. | LED size definitions |
2.10. | Micro-LED displays: size is an important feature |
2.11. | Micro LED displays: beyond the size |
2.12. | A better definition? |
2.13. | Micro-LED display panel structure |
3. | EPITAXY AND CHIP MANUFACTURING |
3.1. | Introduction to light-emitting diodes |
3.1.1. | History of solid-state lighting |
3.1.2. | What is an LED? |
3.1.3. | How does an LED work? |
3.1.4. | Homojunction vs. heterojunction |
3.1.5. | LEDs by package technique |
3.1.6. | Typical LED and packaged LED sizes |
3.1.7. | Comparison between SMD and COB |
3.1.8. | COB for displays |
3.1.9. | List of global major LED companies with introduction |
3.2. | Epitaxy |
3.2.1. | Bandgap vs. lattice constant for III-V semiconductors |
3.2.2. | Materials for commercial LED chips |
3.2.3. | Green gap |
3.2.4. | Epitaxy substrate |
3.2.5. | Wafer patterning |
3.2.6. | Epitaxy methods |
3.2.7. | Metal organic chemical vapor deposition |
3.2.8. | Pros and cons of MOCVD |
3.2.9. | Epitaxial growth requirement |
3.2.10. | Offering from Aixtron and Veeco |
3.2.11. | Veeco's offering |
3.2.12. | Engineered substrate |
3.2.13. | Wafer uniformity 1 |
3.2.14. | Wavelength uniformity 2 |
3.2.15. | Solutions for wafer nonuniformity |
3.3. | Chip manufacturing |
3.3.1. | LED fabrication flowchart |
3.3.2. | Typical RGB LED designs |
3.3.3. | LED chip structures |
3.3.4. | LED chip structure illustrations |
3.3.5. | Future of the LED chip structure |
3.3.6. | Epi-film transfer |
3.3.7. | Fabrication of vertical GaN-LEDs |
3.4. | Micro-LED Performances |
3.4.1. | Influence of micro-LED performance |
3.4.2. | EQE of micro-LED versus current density |
3.4.3. | Efficiency droop |
3.4.4. | Temperature stability |
3.4.5. | Bowing of wavelength shift |
3.4.6. | Size dependence of micro-LEDs |
3.4.7. | Efficiencies and requirement of RGB micro-LEDs |
3.4.8. | Surface recombination |
3.4.9. | Sidewall effect |
3.4.10. | Side wall passivation |
3.4.11. | Efficiency improvement |
4. | TRANSFER AND ASSEMBLY |
4.1.1. | Introduction |
4.1.2. | Mass transfer and assembly technologies |
4.1.3. | Requirements of mass transfer |
4.1.4. | Chiplet mass transfer types |
4.2. | Chiplet Mass Transfer |
4.2.1. | Introduction to chiplet mass assembly |
4.2.2. | Chiplet mass transfer scenario |
4.2.3. | Comparison of mass transfer technologies |
4.2.4. | Comparison of transfer technologies of different companies |
4.2.5. | Transfer yield |
4.2.6. | Fine pick and place |
4.2.7. | Overview of Elastomeric stamp |
4.2.8. | Transfer process flow |
4.2.9. | Elastomeric stamp: pros and cons |
4.2.10. | Stamp yield vs. defect density |
4.2.11. | Key technologies for micro-LED mass transfer |
4.2.12. | Substrate treatment |
4.2.13. | Kinetic control of the elastomeric stamp adhesion |
4.2.14. | Elastomeric stamp |
4.2.15. | Pitch size determination |
4.2.16. | X-Celeprint |
4.2.17. | µLED fabrication |
4.2.18. | µLEDs from sapphire substrate |
4.2.19. | Passive matrix displays made by micro-transfer printing |
4.2.20. | Passive matrix μLED display fabrication |
4.2.21. | Active matrix displays made by micro-transfer printing |
4.2.22. | Active matrix μLED display fabrication |
4.2.23. | Automated micro-transfer printing machinery |
4.2.24. | Capillary-assisted transfer printing |
4.2.25. | Mikro Mesa: Transfer technology |
4.2.26. | Mikro Mesa: Transfer flowchart |
4.2.27. | Mikro Mesa: Transfer stamp |
4.2.28. | Mikro Mesa: Transfer design target |
4.2.29. | PlayNitride: Mass transfer for micro-LED chips |
4.2.30. | PlayNitride: Mass transfer flowchart |
4.2.31. | Visionox |
4.2.32. | ITRI: Chip fabrication |
4.2.33. | ITRI's mass transfer process |
4.2.34. | ITRI's transfer module |
4.2.35. | Overview of electrostatic array |
4.2.36. | Electrostatic/electromagnetic transfer |
4.2.37. | Apple/LuxVue |
4.2.38. | VerLASE's large area assembly platform |
4.2.39. | Interposer idea |
4.2.40. | Self-assembly |
4.2.41. | Introduction of fluidic-assembly |
4.2.42. | eLux: introduction |
4.2.43. | Fabrication of micro-LED chip array |
4.2.44. | eLux's fluidic assembly |
4.2.45. | eLux's display prototypes |
4.2.46. | eLux's supply chain |
4.2.47. | eLux's core patent technology |
4.2.48. | Image quality comparison |
4.2.49. | SWOT analysis of eLux's technology |
4.2.50. | Other fluidic assembly techniques |
4.2.51. | Fluidic assembly (physical): overview |
4.2.52. | Alien |
4.2.53. | Alien's fluidic self-assembly technology |
4.2.54. | Self-assembly based on shape/geometry matching |
4.2.55. | Shape-based self-assembly |
4.2.56. | Fluidic assembly (electrophoretic): overview |
4.2.57. | Electrophoretic positioning of LEDs |
4.2.58. | PARC's xerographic micro-assembly Printing |
4.2.59. | Fluidic-assembly (surface energy): overview |
4.2.60. | Mechanism of surface-tension-driven fluidic assembly |
4.2.61. | Surface tension based fluidic assembly |
4.2.62. | Fluidic-assembly (magnetic): overview |
4.2.63. | Magnetically-assisted assembly |
4.2.64. | Fluidic-assembly (photoelectrochemical): overview |
4.2.65. | Photoelectrochemically driven fluidic-assembly |
4.2.66. | Fluidic-assembly (combination): overview |
4.2.67. | Chip mounting apparatus |
4.2.68. | Summary of fluidic assembly |
4.2.69. | SelfArray |
4.2.70. | Laser enabled transfer |
4.2.71. | Overview of laser enabled transfer |
4.2.72. | Laser beam requirement |
4.2.73. | Coherent UVtransfer 3in1 System |
4.2.74. | Uniqarta's parallel laser-enabled transfer technology |
4.2.75. | QMAT's beam-addressed release technology |
4.2.76. | Optovate's technology |
4.2.77. | Coherent's approach |
4.2.78. | Toray's offering |
4.2.79. | Visionox's achievement |
4.2.80. | Other chiplet mass transfer techniques |
4.2.81. | Korean Institute of Machinery and Materials (KIMM) |
4.2.82. | VueReal's cartridge printing technique |
4.2.83. | VueReal's micro printer |
4.2.84. | Innovasonic's technology |
4.2.85. | Rohinni's technology |
4.2.86. | Two-step micro-transfer technology |
4.2.87. | Micro-transfer using a stretchable film |
4.2.88. | Micro-pick-and-place |
4.2.89. | Photo-polymer mass transfer |
4.3. | Monolithic Hybrid Integration |
4.3.1. | Monolithic integration |
4.3.2. | Flip-chip hybrid integration |
4.3.3. | Wafer bonding process |
4.3.4. | Monolithic hybrid integration structure |
4.3.5. | Selective transfer by selective bonding-debonding |
4.3.6. | Pros and cons of monolithic hybrid integration |
4.3.7. | Players on monolithic hybrid integration |
4.4. | All-In-One Transfer |
4.4.1. | All-in-one CMOS driving |
4.4.2. | Pros and cons of all-in-one CMOS driving technique |
4.5. | Fully Monolithic Integration |
4.5.1. | Introduction of fully monolithic integration |
4.5.2. | JBD's integration technology |
4.5.3. | Lumiode approach |
4.5.4. | Lumiode approach, process details |
4.5.5. | Temperature performance for the crystallization |
4.5.6. | Wafer from Lumiode |
4.5.7. | Ostendo's approach |
4.5.8. | Ostendo's QPI structure |
4.6. | GaN on Silicon |
4.6.1. | GaN-on-Si for various application markets |
4.6.2. | GaN on silicon epi types |
4.6.3. | Challenges of GaN-on-Silicon epitaxy |
4.6.4. | Value propositions of GaN-on-Si |
4.6.5. | GaN on sapphire vs. on silicon |
4.6.6. | GaN-on-Si approach |
4.6.7. | Cost comparison: sapphire vs silicon |
4.6.8. | Is GaN-on-Si the ultimate option? |
4.6.9. | Players working on GaN micro-LEDs on silicon |
4.7. | Nanowires |
4.7.1. | Comparison between 2D and 3D micro-LEDs |
4.7.2. | GaN epitaxy on silicon substrate |
4.7.3. | Aledia process flow |
4.7.4. | Aledia's nanowire technology |
4.7.5. | Front size device technology |
4.7.6. | Nanowires growth on silicon substrate |
4.7.7. | Size influence on nanowire's efficiency |
4.7.8. | Native EL RGB nanowires |
4.7.9. | 3D technology for small-display applications |
4.7.10. | Micro-display enabled by nanowires and 3D integration |
4.7.11. | Future of nanowire approach |
4.8. | Bonding and interconnection |
4.8.1. | Classification |
4.8.2. | Summary |
4.8.3. | Wire bonding and flip chip bonding |
4.8.4. | ACF bonding |
4.8.5. | Interconnection by resin reflow |
4.8.6. | Microtube interconnections |
4.8.7. | Microtube fabrication |
4.8.8. | Transfer and interconnection process by microtubes |
5. | TESTING |
5.1. | Testing techniques |
5.2. | Challenges in inspection |
5.3. | PL vs. EL testing |
5.4. | EL test by Tesoro Scientific |
5.5. | Camera-based microscopic imaging system |
5.6. | Inspection solution by Toray |
5.7. | Instrument System's solution |
5.8. | PL+AOI |
5.9. | TTPCON's solution |
5.10. | Cathodoluminescence used for testing |
5.11. | Hamamatsu Photonics' PL testing |
5.12. | Trends of testing |
6. | DEFECT MANAGEMENT |
6.1. | Introduction |
6.2. | Defect types |
6.3. | Redundancy |
6.4. | Repair |
6.5. | Laser micro trimming |
6.6. | PlayNitride's SMAR Tech |
6.7. | Defect compensation by QDs |
7. | MICRO-LED DISPLAY FULL-COLOUR REALIZATION |
7.1.1. | Strategies for full colour realization |
7.1.2. | Direct RGB or color converters? |
7.1.3. | RGB micro-LEDs vs. blue micro-LED + QD |
7.2. | Colour filters |
7.2.1. | Colour filters |
7.2.2. | Colour filter process flow: black matrix process |
7.2.3. | Colour filter process flow: RGB process |
7.3. | Optical lens synthesis |
7.3.1. | Full colour realized by optical lens synthesis |
7.3.2. | Full colour realization for projectors |
7.4. | Do phosphors work for micro-LED displays? |
7.4.1. | Introduction to phosphors |
7.4.2. | Requirements for phosphors in LEDs |
7.4.3. | Table of phosphor materials |
7.4.4. | Search for narrow FWHM red phosphors |
7.4.5. | Common and emerging red-emitting phosphors |
7.4.6. | Red phosphor options: TriGainTM from GE |
7.4.7. | Reliability of TriGain |
7.4.8. | Commercial progress of GE's narrowband red phosphor |
7.4.9. | Small sized PFS phosphor |
7.4.10. | Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor |
7.4.11. | Thermal stability of common RGY phosphors |
7.4.12. | Narrow band green phosphor |
7.4.13. | High performance organic phosphors |
7.4.14. | Toray's organic colour conversion film |
7.4.15. | Colour coverage of Toray's colour conversion films |
7.4.16. | Stability of Toray's colour conversion films |
7.4.17. | Response time feature of Toray's colour conversion films |
7.4.18. | Suppliers of phosphors |
7.5. | Quantum dot approach |
7.5.1. | Introduction to quantum dots |
7.5.2. | Value propositions of QDs in displays |
7.5.3. | Quantum dots used for micro-LED displays |
7.5.4. | QDs vs. phosphors: particle size |
7.5.5. | QDs vs. phosphors: response time |
7.5.6. | QDs vs. phosphors: colour tunability |
7.5.7. | QDs vs. phosphors: stability |
7.5.8. | QDs vs. phosphors: FWHM |
7.5.9. | Pros and cons of QD converters |
7.5.10. | Basic requirements of QDs for micro-LED displays |
7.5.11. | Trade-off between efficiency and leakage |
7.5.12. | Efficiency drop and red shift |
7.5.13. | Thickness of the QD layer for absorption |
7.5.14. | Display structure with QDs |
7.5.15. | Polarizers, short-pass filters, and other additional layers? |
7.5.16. | High blue absorptive QD materials |
7.5.17. | QD converters for µLED displays |
7.5.18. | Inkjet printing used for colour filters |
7.5.19. | Ink-jet printed QD colour converters |
7.5.20. | Curing methods |
7.5.21. | Inkjet printed QD |
7.5.22. | DIC's work |
7.5.23. | Photolithography process |
7.5.24. | QD photoresist fabrication |
7.5.25. | Photoresist approach |
7.5.26. | Successive patterning of red and green QD of various sizes |
7.5.27. | QD photoresist |
7.5.28. | Quantum-dots colour conversion layer |
7.5.29. | Full-colour emission of quantum-dot-based micro-LED display by aerosol jet technology |
7.5.30. | Electrohydrodynamic jet printing |
7.5.31. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays |
7.6. | Quantum well approach |
7.6.1. | Quantum wells |
7.6.2. | Conclusions |
8. | LIGHT MANAGEMENT |
8.1. | Light management approach summary |
8.2. | Layers to optimize current distribution for better light extraction |
8.3. | InfiniLED's approach to increase light extraction efficiency |
8.4. | Methods to capture light output |
8.5. | Micro-catadioptric optical array for better directionality |
9. | BACKPLANES AND DRIVING |
9.1. | Backplane and driving options for Micro-LED displays |
9.2. | Introduction to metal oxide semiconductor field-effect transistors |
9.3. | Introduction to thin film transistors |
9.4. | Introduction to complementary metal oxide semiconductor |
9.5. | Introduction to backplane |
9.6. | TFT materials |
9.7. | Pixel driving for OLED |
9.8. | LCD pixel structure |
9.9. | TFT backplane |
9.10. | Passive matrix addressing |
9.11. | Passive driving structure |
9.12. | Active matrix addressing |
9.13. | Comparison between PM and AM addressing |
9.14. | Transistor-micro-LED connection design |
9.15. | Driving for micro-LEDs |
9.16. | Pulse width modulation |
9.17. | PAM vs. PWM |
9.18. | Driving voltage |
9.19. | Driving vs. EQE |
9.20. | RGB driver |
9.21. | Active matrix micro-LEDs with LTPS TFT backplane |
9.22. | Conclusion |
10. | IMAGE QUALITY IMPROVEMENT, POWER CONSUMPTION REDUCTION AND OTHER DESIGNS |
10.1. | Image Quality Improvement |
10.1.1. | TFT-based image uniformity issues |
10.1.2. | LED binning |
10.1.3. | Drive design |
10.1.4. | Optical compensation |
10.1.5. | Drive compensation |
10.2. | Power Consumption Reduction |
10.2.1. | LED and TFT |
10.2.2. | Drive mode optimization |
10.2.3. | Backplane optimization |
11. | MINI-LED DISPLAYS |
11.1. | Mini-LED display configurations |
11.2. | What kind of role is mini-LED playing? |
11.3. | MiniLEDs, real hope for 2021 onward? |
11.4. | Trends of Mini-LED displays |
12. | COST ANALYSIS |
12.1. | Cost basics |
12.2. | Micro-LED cost vs. Die size |
12.3. | Cost assumption |
12.4. | Cost analysis |
12.5. | Economics of micro-LED: cost down paths |
13. | MARKET ANALYSIS |
13.1. | Forecast approaches and assumptions |
13.2. | Market forecast of shipment unit |
13.3. | 2026 & 2031 application market share |
13.4. | Market forecast analysis |
13.5. | Wafer value forecast |
14. | PARTNERSHIPS, MERGES, ACQUISITIONS AND JOINT VENTURE |
14.1. | Display cycle |
14.2. | Benefits |
14.3. | Epistar & Leyard |
14.4. | PlayNitride & RIT Display |
14.5. | Konka & Chongqing Liangshan Industrial Investment, Konka & LianTronics |
14.6. | BOE & Rohinni |
14.7. | Lextar & X Display |
14.8. | JDI & glō, Kyocera & glō |
14.9. | Seoul Semiconductors & Viosys |
14.10. | Kulicke & Soffa and Uniqarta |
15. | PLAYERS AND CASE STUDIES |
15.1.1. | Players discussed in this report |
15.2. | Aledia |
15.2.1. | Aledia: introduction |
15.2.2. | Scalability to larger silicon substrate |
15.2.3. | Aledia's quasi-fabless business model |
15.2.4. | Integration process of Aledia's WireLED display |
15.2.5. | Wafer uniformity of nanowires |
15.2.6. | Colour conversion of WireLEDs |
15.2.7. | Interconnection options |
15.2.8. | Aledia's display modules |
15.3. | ALLOS Semiconductors |
15.3.1. | ALLOS Semiconductors: introduction |
15.3.2. | Strain management and emission uniformity |
15.3.3. | Strain management |
15.3.4. | Aoto Electronics |
15.4. | Apple |
15.4.1. | Apple |
15.4.2. | Apple's new Micro-LED chiplet architecture |
15.4.3. | AU Optronics |
15.5. | AU Optronics |
15.5.1. | AUO's LTPS TFT driven micro-LED display |
15.6. | BOE |
15.6.1. | Speeding up towards mini- and micro-LED displays |
15.6.2. | BOE mini-LED Backlight |
15.6.3. | BOE Mini LED Display |
15.7. | CEA-Leti |
15.7.1. | CEA-Leti: introduction |
15.7.2. | Demos by hybridization technology |
15.7.3. | Display performance |
15.7.4. | Process of fabricating hybridization micro-displays |
15.7.5. | Process of fabricating monolithic micro-displays |
15.7.6. | Novel approach for monolithic display fabrication |
15.8. | Chengdu Vistar Optoelectronics |
15.8.1. | Chengdu Vistar Optoelectronics |
15.9. | EpiPix |
15.9.1. | Introduction of EpiPix |
15.9.2. | EpiPix's technique |
15.10. | glō |
15.10.1. | Introduction of glō |
15.10.2. | Glō's technology |
15.10.3. | Glō's prototypes |
15.11. | ITRI |
15.11.1. | ITRI development of micro-LEDs |
15.11.2. | ITRI's progress |
15.11.3. | ITRI's offering |
15.11.4. | Micro-LED device characteristics |
15.11.5. | Reliability test |
15.11.6. | ITRI's MicroLED displays |
15.11.7. | ITRI's transparent MicroLED displays |
15.11.8. | ITRI |
15.12. | Jade Bird Display |
15.12.1. | Jade Bird Display: introduction |
15.12.2. | Existing hybrid integration technology by flip chip technique |
15.12.3. | Device fabrication |
15.12.4. | Device structure and architecture |
15.12.5. | micro-LEDs for the JBD's micro-displays |
15.12.6. | JBD's monochromatic AM micro-LED micro-displays |
15.12.7. | AM micro-LED with directional emission |
15.12.8. | Application: 3 colour LED projector |
15.12.9. | High PPI AM micro-LED micro-display |
15.12.10. | AM micro-LED chips |
15.12.11. | Prototype for AR/VR |
15.13. | Japan Display Inc. (JDI) |
15.13.1. | JDI's prototype |
15.14. | Konka |
15.14.1. | Konka's efforts on Micro-LED displays |
15.14.2. | Konka's smart watch |
15.15. | Kyocera |
15.15.1. | Kyocera: high PPI micro-LED display |
15.15.2. | Kyocera: display design |
15.16. | LG |
15.16.1. | Micro LED Signage |
15.17. | Lumens |
15.17.1. | Lumens' micro-LED displays |
15.17.2. | Lumen's prototypes |
15.18. | Lumiode |
15.18.1. | Lumiode: introduction |
15.18.2. | Lumiode approach, process details |
15.18.3. | Lumiode's micro-LED performance |
15.18.4. | Lumiode's device performance |
15.19. | Micro Nitride |
15.19.1. | Micro Nitride: Introduction |
15.19.2. | Micro Nitride's technology |
15.20. | Mikro Mesa |
15.20.1. | About Mikro Mesa |
15.20.2. | Mikro Mesa's micro-LEDs |
15.20.3. | Mikro Mesa: Current injection |
15.21. | Nanjing CEC Panda FPD Technology |
15.21.1. | Introduction of CEC Panda |
15.21.2. | Micro-LED and oxide development of Panda |
15.22. | Plessey |
15.22.1. | Plessey: GaN-on-Silicon |
15.22.2. | Plessey's display development roadmap |
15.22.3. | LED manufacturing |
15.22.4. | Pixel development |
15.22.5. | RGB GaN on silicon |
15.22.6. | Plessey's core development |
15.22.7. | Prototype |
15.23. | PlayNitride |
15.23.1. | PlayNitride: Introduction |
15.23.2. | Role of PlayNitride at micro-LED ecosystem |
15.23.3. | PlayNitride timeline |
15.23.4. | PlayNitride's application market |
15.23.5. | PixeLED display structure |
15.23.6. | PixeLED MatrixTM tiling display technology |
15.23.7. | PlayNitride: Prototypes |
15.24. | Rohinni |
15.24.1. | Introduction of Rohinni |
15.24.2. | Technology |
15.24.3. | Product benefits example |
15.25. | Samsung |
15.25.1. | Samsung left LCD business |
15.25.2. | The Wall vs. The Window |
15.25.3. | LED Cinema Screen |
15.25.4. | Samsung's MicroLED Home Screen at CES 2021 |
15.25.5. | Samsung's QNED |
15.25.6. | Price of Samsung TVs |
15.25.7. | RGB one chip |
15.26. | Saphlux |
15.26.1. | Saphlux: introduction |
15.26.2. | NPQD technology |
15.27. | Sharp |
15.27.1. | Sharp: introduction |
15.27.2. | Process flow of Silicon Display |
15.27.3. | Display driver |
15.27.4. | Monolithic micro-LED array |
15.27.5. | Full colour realization |
15.27.6. | Prototypes made by Sharp |
15.27.7. | New spin-off |
15.28. | Sony |
15.28.1. | Sony: initial efforts |
15.28.2. | Sony: scalable display system |
15.28.3. | Sony: precise tiling |
15.28.4. | Sony: micro-LEDs |
15.28.5. | Sony: viewing angle advantages |
15.28.6. | Sony: active matrix driving with micro IC |
15.28.7. | Sony: HDR reproducibility |
15.28.8. | Sony: business strategy |
15.29. | Stan (Shenzhen) Technology |
15.29.1. | Stan Technology |
15.30. | TCL/CSOT |
15.30.1. | The Cinema Wall |
15.30.2. | TFT backplane-based micro-LED displays |
15.30.3. | TCL CSOT Mini LED roadmap |
15.31. | Visionox |
15.31.1. | Visionox's planning |
15.32. | VueReal |
15.33. | VueReal: introduction |
15.34. | VueReal: high efficiency micro-LEDs |
15.35. | VueReal: Inspection |
15.36. | VueReal: curing |
15.37. | VueReal: prototypes |
16. | APPENDIX |
16.1. | Colours and pixels |
16.2. | What is resolution? |
16.3. | Pixel pitch and fill factor |
16.4. | EQE and IQE |
16.5. | 3D colour volume |
16.6. | LCD panel structure |
16.7. | Active matrix-LCD structure |
Slides | 668 |
---|---|
Forecasts to | 2031 |